jburkardt

TOEPLITZ_CHOLESKY\ Cholesky Factor of Nonnegative Definite Toeplitz Matrix {#toeplitz_cholesky-cholesky-factor-of-nonnegative-definite-toeplitz-matrix align=”center”} =======================================================


TOEPLITZ_CHOLESKY is a C library which computes the Cholesky factorization of a nonnegative definite symmetric Toeplitz matrix.

A Toeplitz matrix is a matrix which is constant along all diagonals. A schematic of a 3x4 Toeplitz matrix would be

        a  b  c  d
        e  a  b  c
        f  e  a  b

A symmetric matrix is a matrix with N rows and N columns, such that A(I,J) = A(J,I) for all indices I and J. All the eigenvalues of a symmetric matrix are real.

A symmetric Toeplitz matrix is a matrix which is symmetric and Toeplitz. A schematic of a 4x4 symmetric Toeplitz matrix would be

        a  b  c  d
        b  a  b  c
        c  b  a  b
        d  c  b  a

A nonnegative definite symmetric matrix A is a symmetric matrix whose eigenvalues are all nonnegative.

Given a nonnegative definite symmetric matrix A, the upper Cholesky factor R is an upper triangular matrix such that A = R’ * R; the lower Cholesky factor L is a lower triangular matrix such that A = L L’. Obviously, L = R’.

A Toeplitz matrix can be represented in a compressed format that stores the first row and the first column (omitting the first entry). One convenient format would be to create the 2xN array G as follows:

       G(1,1:N) = A(1,1:N)
       G(2,1)   = 0.0
       G(2,2:N) = A(2:N,1)

A symmetric Toeplitz matrix can be represented in a compressed format that stores just the first row.

Licensing: {#licensing align=”center”}

The computer code and data files described and made available on this web page are distributed under the GNU LGPL license.

Languages: {#languages align=”center”}

TOEPLITZ_CHOLESKY is available in a C version and a C++ version and a FORTRAN77 version and a FORTRAN90 version and a MATLAB version.

ASA006, a C library which computes the Cholesky factorization of a symmetric positive definite matrix, by Michael Healy. This is a MATLAB version of Applied Statistics Algorithm 6;

LINPACK_D, a C library which factors and solves linear systems using double precision real arithmetic, by Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart.

LINPLUS, a C library which carries out simple manipulations of matrices in a variety of formats, including matrices stored in banded, border-banded, circulant, lower triangular, pentadiagonal, sparse, symmetric, toeplitz, tridiagonal, upper triangular and vandermonde formats.

Reference: {#reference align=”center”}

  1. Michael Stewart,\ Cholesky factorization of semi-definite Toeplitz matrices.

Source Code: {#source-code align=”center”}

Examples and Tests: {#examples-and-tests align=”center”}

List of Routines: {#list-of-routines align=”center”}

You can go up one level to the C source codes.


Last modified on 14 November 2012.