16 October 2011 12:11:39 PM

SGMGA_VCN_PRB
  C++ version
  Test the SGMGA_VCN and SGMGA_VCN_ORDERED functions.

SGMGA_VCN_TESTS
  calls SGMGA_VCN_TEST.

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               1
  LEVEL_WEIGHT:
               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN              -2   0   0
     1               0   0   0
   MAX               0   0   0

  SGMGA_VCN
     I               Q   X
   MIN              -2   0   0
     1               0   0   0
   MAX               0   0   0

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               1
  LEVEL_WEIGHT:
               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN              -1   0   0
     1               0   0   0
     2               1   1   0
     3               1   0   1
   MAX               1   1   1

  SGMGA_VCN
     I               Q   X
   MIN              -1   0   0
     1               0   0   0
     2               1   1   0
     3               1   0   1
   MAX               1   1   1

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               1
  LEVEL_WEIGHT:
               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN               0   0   0
     1               1   1   0
     2               2   2   0
     3               1   0   1
     4               2   1   1
     5               2   0   2
   MAX               2   2   2

  SGMGA_VCN
     I               Q   X
   MIN               0   0   0
     1               1   1   0
     2               2   2   0
     3               1   0   1
     4               2   1   1
     5               2   0   2
   MAX               2   2   2

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               1
  LEVEL_WEIGHT:
               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN               1   0   0
     1               2   2   0
     2               3   3   0
     3               2   1   1
     4               3   2   1
     5               2   0   2
     6               3   1   2
     7               3   0   3
   MAX               3   3   3

  SGMGA_VCN
     I               Q   X
   MIN               1   0   0
     1               2   2   0
     2               3   3   0
     3               2   1   1
     4               3   2   1
     5               2   0   2
     6               3   1   2
     7               3   0   3
   MAX               3   3   3

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               1
  LEVEL_WEIGHT:
               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN               2   0   0
     1               3   3   0
     2               4   4   0
     3               3   2   1
     4               4   3   1
     5               3   1   2
     6               4   2   2
     7               3   0   3
     8               4   1   3
     9               4   0   4
   MAX               4   4   4

  SGMGA_VCN
     I               Q   X
   MIN               2   0   0
     1               3   3   0
     2               4   4   0
     3               3   2   1
     4               4   3   1
     5               3   1   2
     6               4   2   2
     7               3   0   3
     8               4   1   3
     9               4   0   4
   MAX               4   4   4

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               1               1
  LEVEL_WEIGHT:
               1               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN              -3   0   0   0
     1               0   0   0   0
   MAX               0   0   0   0

  SGMGA_VCN
     I               Q   X
   MIN              -3   0   0   0
     1               0   0   0   0
   MAX               0   0   0   0

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               1               1
  LEVEL_WEIGHT:
               1               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN              -2   0   0   0
     1               0   0   0   0
     2               1   1   0   0
     3               1   0   1   0
     4               1   0   0   1
   MAX               1   1   1   1

  SGMGA_VCN
     I               Q   X
   MIN              -2   0   0   0
     1               0   0   0   0
     2               1   1   0   0
     3               1   0   1   0
     4               1   0   0   1
   MAX               1   1   1   1

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               1               1
  LEVEL_WEIGHT:
               1               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN              -1   0   0   0
     1               0   0   0   0
     2               1   1   0   0
     3               2   2   0   0
     4               1   0   1   0
     5               2   1   1   0
     6               2   0   2   0
     7               1   0   0   1
     8               2   1   0   1
     9               2   0   1   1
    10               2   0   0   2
   MAX               2   2   2   2

  SGMGA_VCN
     I               Q   X
   MIN              -1   0   0   0
     1               0   0   0   0
     2               1   1   0   0
     3               2   2   0   0
     4               1   0   1   0
     5               2   1   1   0
     6               2   0   2   0
     7               1   0   0   1
     8               2   1   0   1
     9               2   0   1   1
    10               2   0   0   2
   MAX               2   2   2   2

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               1               1
  LEVEL_WEIGHT:
               1               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN               0   0   0   0
     1               1   1   0   0
     2               2   2   0   0
     3               3   3   0   0
     4               1   0   1   0
     5               2   1   1   0
     6               3   2   1   0
     7               2   0   2   0
     8               3   1   2   0
     9               3   0   3   0
    10               1   0   0   1
    11               2   1   0   1
    12               3   2   0   1
    13               2   0   1   1
    14               3   1   1   1
    15               3   0   2   1
    16               2   0   0   2
    17               3   1   0   2
    18               3   0   1   2
    19               3   0   0   3
   MAX               3   3   3   3

  SGMGA_VCN
     I               Q   X
   MIN               0   0   0   0
     1               1   1   0   0
     2               2   2   0   0
     3               3   3   0   0
     4               1   0   1   0
     5               2   1   1   0
     6               3   2   1   0
     7               2   0   2   0
     8               3   1   2   0
     9               3   0   3   0
    10               1   0   0   1
    11               2   1   0   1
    12               3   2   0   1
    13               2   0   1   1
    14               3   1   1   1
    15               3   0   2   1
    16               2   0   0   2
    17               3   1   0   2
    18               3   0   1   2
    19               3   0   0   3
   MAX               3   3   3   3

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               1               1
  LEVEL_WEIGHT:
               1               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN               1   0   0   0
     1               2   2   0   0
     2               3   3   0   0
     3               4   4   0   0
     4               2   1   1   0
     5               3   2   1   0
     6               4   3   1   0
     7               2   0   2   0
     8               3   1   2   0
     9               4   2   2   0
    10               3   0   3   0
    11               4   1   3   0
    12               4   0   4   0
    13               2   1   0   1
    14               3   2   0   1
    15               4   3   0   1
    16               2   0   1   1
    17               3   1   1   1
    18               4   2   1   1
    19               3   0   2   1
    20               4   1   2   1
    21               4   0   3   1
    22               2   0   0   2
    23               3   1   0   2
    24               4   2   0   2
    25               3   0   1   2
    26               4   1   1   2
    27               4   0   2   2
    28               3   0   0   3
    29               4   1   0   3
    30               4   0   1   3
    31               4   0   0   4
   MAX               4   4   4   4

  SGMGA_VCN
     I               Q   X
   MIN               1   0   0   0
     1               2   2   0   0
     2               3   3   0   0
     3               4   4   0   0
     4               2   1   1   0
     5               3   2   1   0
     6               4   3   1   0
     7               2   0   2   0
     8               3   1   2   0
     9               4   2   2   0
    10               3   0   3   0
    11               4   1   3   0
    12               4   0   4   0
    13               2   1   0   1
    14               3   2   0   1
    15               4   3   0   1
    16               2   0   1   1
    17               3   1   1   1
    18               4   2   1   1
    19               3   0   2   1
    20               4   1   2   1
    21               4   0   3   1
    22               2   0   0   2
    23               3   1   0   2
    24               4   2   0   2
    25               3   0   1   2
    26               4   1   1   2
    27               4   0   2   2
    28               3   0   0   3
    29               4   1   0   3
    30               4   0   1   3
    31               4   0   0   4
   MAX               4   4   4   4

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               1               1               1
  LEVEL_WEIGHT:
               1               1               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN              -2   0   0   0   0
     1               0   0   0   0   0
     2               1   1   0   0   0
     3               2   2   0   0   0
     4               1   0   1   0   0
     5               2   1   1   0   0
     6               2   0   2   0   0
     7               1   0   0   1   0
     8               2   1   0   1   0
     9               2   0   1   1   0
    10               2   0   0   2   0
    11               1   0   0   0   1
    12               2   1   0   0   1
    13               2   0   1   0   1
    14               2   0   0   1   1
    15               2   0   0   0   2
   MAX               2   2   2   2   2

  SGMGA_VCN
     I               Q   X
   MIN              -2   0   0   0   0
     1               0   0   0   0   0
     2               1   1   0   0   0
     3               2   2   0   0   0
     4               1   0   1   0   0
     5               2   1   1   0   0
     6               2   0   2   0   0
     7               1   0   0   1   0
     8               2   1   0   1   0
     9               2   0   1   1   0
    10               2   0   0   2   0
    11               1   0   0   0   1
    12               2   1   0   0   1
    13               2   0   1   0   1
    14               2   0   0   1   1
    15               2   0   0   0   2
   MAX               2   2   2   2   2

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               1               1               1
  LEVEL_WEIGHT:
               1               1               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN              -1   0   0   0   0
     1               0   0   0   0   0
     2               1   1   0   0   0
     3               2   2   0   0   0
     4               3   3   0   0   0
     5               1   0   1   0   0
     6               2   1   1   0   0
     7               3   2   1   0   0
     8               2   0   2   0   0
     9               3   1   2   0   0
    10               3   0   3   0   0
    11               1   0   0   1   0
    12               2   1   0   1   0
    13               3   2   0   1   0
    14               2   0   1   1   0
    15               3   1   1   1   0
    16               3   0   2   1   0
    17               2   0   0   2   0
    18               3   1   0   2   0
    19               3   0   1   2   0
    20               3   0   0   3   0
    21               1   0   0   0   1
    22               2   1   0   0   1
    23               3   2   0   0   1
    24               2   0   1   0   1
    25               3   1   1   0   1
    26               3   0   2   0   1
    27               2   0   0   1   1
    28               3   1   0   1   1
    29               3   0   1   1   1
    30               3   0   0   2   1
    31               2   0   0   0   2
    32               3   1   0   0   2
    33               3   0   1   0   2
    34               3   0   0   1   2
    35               3   0   0   0   3
   MAX               3   3   3   3   3

  SGMGA_VCN
     I               Q   X
   MIN              -1   0   0   0   0
     1               0   0   0   0   0
     2               1   1   0   0   0
     3               2   2   0   0   0
     4               3   3   0   0   0
     5               1   0   1   0   0
     6               2   1   1   0   0
     7               3   2   1   0   0
     8               2   0   2   0   0
     9               3   1   2   0   0
    10               3   0   3   0   0
    11               1   0   0   1   0
    12               2   1   0   1   0
    13               3   2   0   1   0
    14               2   0   1   1   0
    15               3   1   1   1   0
    16               3   0   2   1   0
    17               2   0   0   2   0
    18               3   1   0   2   0
    19               3   0   1   2   0
    20               3   0   0   3   0
    21               1   0   0   0   1
    22               2   1   0   0   1
    23               3   2   0   0   1
    24               2   0   1   0   1
    25               3   1   1   0   1
    26               3   0   2   0   1
    27               2   0   0   1   1
    28               3   1   0   1   1
    29               3   0   1   1   1
    30               3   0   0   2   1
    31               2   0   0   0   2
    32               3   1   0   0   2
    33               3   0   1   0   2
    34               3   0   0   1   2
    35               3   0   0   0   3
   MAX               3   3   3   3   3

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               0               1
  LEVEL_WEIGHT:
               1               0               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN               0   0   0   0
     1               1   1   0   0
     2               2   2   0   0
     3               1   0   0   1
     4               2   1   0   1
     5               2   0   0   2
   MAX               2   2   0   2

  SGMGA_VCN
     I               Q   X
   MIN               0   0   0   0
     1               1   1   0   0
     2               2   2   0   0
     3               1   0   0   1
     4               2   1   0   1
     5               2   0   0   2
   MAX               2   2   0   2

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               2
  LEVEL_WEIGHT:
               1             0.5

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN            -1.5   0   0
     1               0   0   0
   MAX               0   0   0

  SGMGA_VCN
     I               Q   X
   MIN            -1.5   0   0
     1               0   0   0
   MAX               0   0   0

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               2
  LEVEL_WEIGHT:
               1             0.5

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN            -0.5   0   0
     1               0   0   0
     2               1   1   0
     3             0.5   0   1
     4               1   0   2
   MAX               1   1   2

  SGMGA_VCN
     I               Q   X
   MIN            -0.5   0   0
     1               0   0   0
     2               1   1   0
     3             0.5   0   1
     4               1   0   2
   MAX               1   1   2

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               2
  LEVEL_WEIGHT:
               1             0.5

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN             0.5   0   0
     1               1   1   0
     2               2   2   0
     3             1.5   1   1
     4               1   0   2
     5               2   1   2
     6             1.5   0   3
     7               2   0   4
   MAX               2   2   4

  SGMGA_VCN
     I               Q   X
   MIN             0.5   0   0
     1               1   1   0
     2               2   2   0
     3             1.5   1   1
     4               1   0   2
     5               2   1   2
     6             1.5   0   3
     7               2   0   4
   MAX               2   2   4

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               2
  LEVEL_WEIGHT:
               1             0.5

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN             1.5   0   0
     1               2   2   0
     2               3   3   0
     3             2.5   2   1
     4               2   1   2
     5               3   2   2
     6             2.5   1   3
     7               2   0   4
     8               3   1   4
     9             2.5   0   5
    10               3   0   6
   MAX               3   3   6

  SGMGA_VCN
     I               Q   X
   MIN             1.5   0   0
     1               2   2   0
     2               3   3   0
     3             2.5   2   1
     4               2   1   2
     5               3   2   2
     6             2.5   1   3
     7               2   0   4
     8               3   1   4
     9             2.5   0   5
    10               3   0   6
   MAX               3   3   6

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               2
  LEVEL_WEIGHT:
               1             0.5

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN             2.5   0   0
     1               3   3   0
     2               4   4   0
     3             3.5   3   1
     4               3   2   2
     5               4   3   2
     6             3.5   2   3
     7               3   1   4
     8               4   2   4
     9             3.5   1   5
    10               3   0   6
    11               4   1   6
    12             3.5   0   7
    13               4   0   8
   MAX               4   4   8

  SGMGA_VCN
     I               Q   X
   MIN             2.5   0   0
     1               3   3   0
     2               4   4   0
     3             3.5   3   1
     4               3   2   2
     5               4   3   2
     6             3.5   2   3
     7               3   1   4
     8               4   2   4
     9             3.5   1   5
    10               3   0   6
    11               4   1   6
    12             3.5   0   7
    13               4   0   8
   MAX               4   4   8

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               2               3
  LEVEL_WEIGHT:
               1             0.5        0.333333

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN        -1.83333   0   0   0
     1               0   0   0   0
   MAX               0   0   0   0

  SGMGA_VCN
     I               Q   X
   MIN        -1.83333   0   0   0
     1               0   0   0   0
   MAX               0   0   0   0

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               2               3
  LEVEL_WEIGHT:
               1             0.5        0.333333

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN       -0.833333   0   0   0
     1               0   0   0   0
     2               1   1   0   0
     3             0.5   0   1   0
     4               1   0   2   0
     5        0.333333   0   0   1
     6        0.833333   0   1   1
     7        0.666667   0   0   2
     8               1   0   0   3
   MAX               1   1   2   3

  SGMGA_VCN
     I               Q   X
   MIN       -0.833333   0   0   0
     1               0   0   0   0
     2               1   1   0   0
     3             0.5   0   1   0
     4               1   0   2   0
     5        0.333333   0   0   1
     6        0.833333   0   1   1
     7        0.666667   0   0   2
     8               1   0   0   3
   MAX               1   1   2   3

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               2               3
  LEVEL_WEIGHT:
               1             0.5        0.333333

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN        0.166667   0   0   0
     1               1   1   0   0
     2               2   2   0   0
     3             0.5   0   1   0
     4             1.5   1   1   0
     5               1   0   2   0
     6               2   1   2   0
     7             1.5   0   3   0
     8               2   0   4   0
     9        0.333333   0   0   1
    10         1.33333   1   0   1
    11        0.833333   0   1   1
    12         1.83333   1   1   1
    13         1.33333   0   2   1
    14         1.83333   0   3   1
    15        0.666667   0   0   2
    16         1.66667   1   0   2
    17         1.16667   0   1   2
    18         1.66667   0   2   2
    19               1   0   0   3
    20               2   1   0   3
    21             1.5   0   1   3
    22               2   0   2   3
    23         1.33333   0   0   4
    24         1.83333   0   1   4
    25         1.66667   0   0   5
    26               2   0   0   6
   MAX               2   2   4   6

  SGMGA_VCN
     I               Q   X
   MIN        0.166667   0   0   0
     1               1   1   0   0
     2               2   2   0   0
     3             0.5   0   1   0
     4             1.5   1   1   0
     5               1   0   2   0
     6               2   1   2   0
     7             1.5   0   3   0
     8               2   0   4   0
     9        0.333333   0   0   1
    10         1.33333   1   0   1
    11        0.833333   0   1   1
    12         1.83333   1   1   1
    13         1.33333   0   2   1
    14         1.83333   0   3   1
    15        0.666667   0   0   2
    16         1.66667   1   0   2
    17         1.16667   0   1   2
    18         1.66667   0   2   2
    19               1   0   0   3
    20               2   1   0   3
    21             1.5   0   1   3
    22               2   0   2   3
    23         1.33333   0   0   4
    24         1.83333   0   1   4
    25         1.66667   0   0   5
    26               2   0   0   6
   MAX               2   2   4   6

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               2               3
  LEVEL_WEIGHT:
               1             0.5        0.333333

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN         1.16667   0   0   0
     1               2   2   0   0
     2               3   3   0   0
     3             1.5   1   1   0
     4             2.5   2   1   0
     5               2   1   2   0
     6               3   2   2   0
     7             1.5   0   3   0
     8             2.5   1   3   0
     9               2   0   4   0
    10               3   1   4   0
    11             2.5   0   5   0
    12               3   0   6   0
    13         1.33333   1   0   1
    14         2.33333   2   0   1
    15         1.83333   1   1   1
    16         2.83333   2   1   1
    17         1.33333   0   2   1
    18         2.33333   1   2   1
    19         1.83333   0   3   1
    20         2.83333   1   3   1
    21         2.33333   0   4   1
    22         2.83333   0   5   1
    23         1.66667   1   0   2
    24         2.66667   2   0   2
    25         2.16667   1   1   2
    26         1.66667   0   2   2
    27         2.66667   1   2   2
    28         2.16667   0   3   2
    29         2.66667   0   4   2
    30               2   1   0   3
    31               3   2   0   3
    32             1.5   0   1   3
    33             2.5   1   1   3
    34               2   0   2   3
    35               3   1   2   3
    36             2.5   0   3   3
    37               3   0   4   3
    38         1.33333   0   0   4
    39         2.33333   1   0   4
    40         1.83333   0   1   4
    41         2.83333   1   1   4
    42         2.33333   0   2   4
    43         2.83333   0   3   4
    44         1.66667   0   0   5
    45         2.66667   1   0   5
    46         2.16667   0   1   5
    47         2.66667   0   2   5
    48               2   0   0   6
    49               3   1   0   6
    50             2.5   0   1   6
    51               3   0   2   6
    52         2.33333   0   0   7
    53         2.83333   0   1   7
    54         2.66667   0   0   8
    55               3   0   0   9
   MAX               3   3   6   9

  SGMGA_VCN
     I               Q   X
   MIN         1.16667   0   0   0
     1               2   2   0   0
     2               3   3   0   0
     3             1.5   1   1   0
     4             2.5   2   1   0
     5               2   1   2   0
     6               3   2   2   0
     7             1.5   0   3   0
     8             2.5   1   3   0
     9               2   0   4   0
    10               3   1   4   0
    11             2.5   0   5   0
    12               3   0   6   0
    13         1.33333   1   0   1
    14         2.33333   2   0   1
    15         1.83333   1   1   1
    16         2.83333   2   1   1
    17         1.33333   0   2   1
    18         2.33333   1   2   1
    19         1.83333   0   3   1
    20         2.83333   1   3   1
    21         2.33333   0   4   1
    22         2.83333   0   5   1
    23         1.66667   1   0   2
    24         2.66667   2   0   2
    25         2.16667   1   1   2
    26         1.66667   0   2   2
    27         2.66667   1   2   2
    28         2.16667   0   3   2
    29         2.66667   0   4   2
    30               2   1   0   3
    31               3   2   0   3
    32             1.5   0   1   3
    33             2.5   1   1   3
    34               2   0   2   3
    35               3   1   2   3
    36             2.5   0   3   3
    37               3   0   4   3
    38         1.33333   0   0   4
    39         2.33333   1   0   4
    40         1.83333   0   1   4
    41         2.83333   1   1   4
    42         2.33333   0   2   4
    43         2.83333   0   3   4
    44         1.66667   0   0   5
    45         2.66667   1   0   5
    46         2.16667   0   1   5
    47         2.66667   0   2   5
    48               2   0   0   6
    49               3   1   0   6
    50             2.5   0   1   6
    51               3   0   2   6
    52         2.33333   0   0   7
    53         2.83333   0   1   7
    54         2.66667   0   0   8
    55               3   0   0   9
   MAX               3   3   6   9

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               2               3
  LEVEL_WEIGHT:
               1             0.5        0.333333

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN         2.16667   0   0   0
     1               3   3   0   0
     2               4   4   0   0
     3             2.5   2   1   0
     4             3.5   3   1   0
     5               3   2   2   0
     6               4   3   2   0
     7             2.5   1   3   0
     8             3.5   2   3   0
     9               3   1   4   0
    10               4   2   4   0
    11             2.5   0   5   0
    12             3.5   1   5   0
    13               3   0   6   0
    14               4   1   6   0
    15             3.5   0   7   0
    16               4   0   8   0
    17         2.33333   2   0   1
    18         3.33333   3   0   1
    19         2.83333   2   1   1
    20         3.83333   3   1   1
    21         2.33333   1   2   1
    22         3.33333   2   2   1
    23         2.83333   1   3   1
    24         3.83333   2   3   1
    25         2.33333   0   4   1
    26         3.33333   1   4   1
    27         2.83333   0   5   1
    28         3.83333   1   5   1
    29         3.33333   0   6   1
    30         3.83333   0   7   1
    31         2.66667   2   0   2
    32         3.66667   3   0   2
    33         3.16667   2   1   2
    34         2.66667   1   2   2
    35         3.66667   2   2   2
    36         3.16667   1   3   2
    37         2.66667   0   4   2
    38         3.66667   1   4   2
    39         3.16667   0   5   2
    40         3.66667   0   6   2
    41               3   2   0   3
    42               4   3   0   3
    43             2.5   1   1   3
    44             3.5   2   1   3
    45               3   1   2   3
    46               4   2   2   3
    47             2.5   0   3   3
    48             3.5   1   3   3
    49               3   0   4   3
    50               4   1   4   3
    51             3.5   0   5   3
    52               4   0   6   3
    53         2.33333   1   0   4
    54         3.33333   2   0   4
    55         2.83333   1   1   4
    56         3.83333   2   1   4
    57         2.33333   0   2   4
    58         3.33333   1   2   4
    59         2.83333   0   3   4
    60         3.83333   1   3   4
    61         3.33333   0   4   4
    62         3.83333   0   5   4
    63         2.66667   1   0   5
    64         3.66667   2   0   5
    65         3.16667   1   1   5
    66         2.66667   0   2   5
    67         3.66667   1   2   5
    68         3.16667   0   3   5
    69         3.66667   0   4   5
    70               3   1   0   6
    71               4   2   0   6
    72             2.5   0   1   6
    73             3.5   1   1   6
    74               3   0   2   6
    75               4   1   2   6
    76             3.5   0   3   6
    77               4   0   4   6
    78         2.33333   0   0   7
    79         3.33333   1   0   7
    80         2.83333   0   1   7
    81         3.83333   1   1   7
    82         3.33333   0   2   7
    83         3.83333   0   3   7
    84         2.66667   0   0   8
    85         3.66667   1   0   8
    86         3.16667   0   1   8
    87         3.66667   0   2   8
    88               3   0   0   9
    89               4   1   0   9
    90             3.5   0   1   9
    91               4   0   2   9
    92         3.33333   0   0  10
    93         3.83333   0   1  10
    94         3.66667   0   0  11
    95               4   0   0  12
   MAX               4   4   8  12

  SGMGA_VCN
     I               Q   X
   MIN         2.16667   0   0   0
     1               3   3   0   0
     2               4   4   0   0
     3             2.5   2   1   0
     4             3.5   3   1   0
     5               3   2   2   0
     6               4   3   2   0
     7             2.5   1   3   0
     8             3.5   2   3   0
     9               3   1   4   0
    10               4   2   4   0
    11             2.5   0   5   0
    12             3.5   1   5   0
    13               3   0   6   0
    14               4   1   6   0
    15             3.5   0   7   0
    16               4   0   8   0
    17         2.33333   2   0   1
    18         3.33333   3   0   1
    19         2.83333   2   1   1
    20         3.83333   3   1   1
    21         2.33333   1   2   1
    22         3.33333   2   2   1
    23         2.83333   1   3   1
    24         3.83333   2   3   1
    25         2.33333   0   4   1
    26         3.33333   1   4   1
    27         2.83333   0   5   1
    28         3.83333   1   5   1
    29         3.33333   0   6   1
    30         3.83333   0   7   1
    31         2.66667   2   0   2
    32         3.66667   3   0   2
    33         3.16667   2   1   2
    34         2.66667   1   2   2
    35         3.66667   2   2   2
    36         3.16667   1   3   2
    37         2.66667   0   4   2
    38         3.66667   1   4   2
    39         3.16667   0   5   2
    40         3.66667   0   6   2
    41               3   2   0   3
    42               4   3   0   3
    43             2.5   1   1   3
    44             3.5   2   1   3
    45               3   1   2   3
    46               4   2   2   3
    47             2.5   0   3   3
    48             3.5   1   3   3
    49               3   0   4   3
    50               4   1   4   3
    51             3.5   0   5   3
    52               4   0   6   3
    53         2.33333   1   0   4
    54         3.33333   2   0   4
    55         2.83333   1   1   4
    56         3.83333   2   1   4
    57         2.33333   0   2   4
    58         3.33333   1   2   4
    59         2.83333   0   3   4
    60         3.83333   1   3   4
    61         3.33333   0   4   4
    62         3.83333   0   5   4
    63         2.66667   1   0   5
    64         3.66667   2   0   5
    65         3.16667   1   1   5
    66         2.66667   0   2   5
    67         3.66667   1   2   5
    68         3.16667   0   3   5
    69         3.66667   0   4   5
    70               3   1   0   6
    71               4   2   0   6
    72             2.5   0   1   6
    73             3.5   1   1   6
    74               3   0   2   6
    75               4   1   2   6
    76             3.5   0   3   6
    77               4   0   4   6
    78         2.33333   0   0   7
    79         3.33333   1   0   7
    80         2.83333   0   1   7
    81         3.83333   1   1   7
    82         3.33333   0   2   7
    83         3.83333   0   3   7
    84         2.66667   0   0   8
    85         3.66667   1   0   8
    86         3.16667   0   1   8
    87         3.66667   0   2   8
    88               3   0   0   9
    89               4   1   0   9
    90             3.5   0   1   9
    91               4   0   2   9
    92         3.33333   0   0  10
    93         3.83333   0   1  10
    94         3.66667   0   0  11
    95               4   0   0  12
   MAX               4   4   8  12

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               2               3               4
  LEVEL_WEIGHT:
               1             0.5        0.333333            0.25

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN      -0.0833333   0   0   0   0
     1               0   0   0   0   0
     2               1   1   0   0   0
     3               2   2   0   0   0
     4             0.5   0   1   0   0
     5             1.5   1   1   0   0
     6               1   0   2   0   0
     7               2   1   2   0   0
     8             1.5   0   3   0   0
     9               2   0   4   0   0
    10        0.333333   0   0   1   0
    11         1.33333   1   0   1   0
    12        0.833333   0   1   1   0
    13         1.83333   1   1   1   0
    14         1.33333   0   2   1   0
    15         1.83333   0   3   1   0
    16        0.666667   0   0   2   0
    17         1.66667   1   0   2   0
    18         1.16667   0   1   2   0
    19         1.66667   0   2   2   0
    20               1   0   0   3   0
    21               2   1   0   3   0
    22             1.5   0   1   3   0
    23               2   0   2   3   0
    24         1.33333   0   0   4   0
    25         1.83333   0   1   4   0
    26         1.66667   0   0   5   0
    27               2   0   0   6   0
    28            0.25   0   0   0   1
    29            1.25   1   0   0   1
    30            0.75   0   1   0   1
    31            1.75   1   1   0   1
    32            1.25   0   2   0   1
    33            1.75   0   3   0   1
    34        0.583333   0   0   1   1
    35         1.58333   1   0   1   1
    36         1.08333   0   1   1   1
    37         1.58333   0   2   1   1
    38        0.916667   0   0   2   1
    39         1.91667   1   0   2   1
    40         1.41667   0   1   2   1
    41         1.91667   0   2   2   1
    42            1.25   0   0   3   1
    43            1.75   0   1   3   1
    44         1.58333   0   0   4   1
    45         1.91667   0   0   5   1
    46             0.5   0   0   0   2
    47             1.5   1   0   0   2
    48               1   0   1   0   2
    49               2   1   1   0   2
    50             1.5   0   2   0   2
    51               2   0   3   0   2
    52        0.833333   0   0   1   2
    53         1.83333   1   0   1   2
    54         1.33333   0   1   1   2
    55         1.83333   0   2   1   2
    56         1.16667   0   0   2   2
    57         1.66667   0   1   2   2
    58             1.5   0   0   3   2
    59               2   0   1   3   2
    60         1.83333   0   0   4   2
    61            0.75   0   0   0   3
    62            1.75   1   0   0   3
    63            1.25   0   1   0   3
    64            1.75   0   2   0   3
    65         1.08333   0   0   1   3
    66         1.58333   0   1   1   3
    67         1.41667   0   0   2   3
    68         1.91667   0   1   2   3
    69            1.75   0   0   3   3
    70               1   0   0   0   4
    71               2   1   0   0   4
    72             1.5   0   1   0   4
    73               2   0   2   0   4
    74         1.33333   0   0   1   4
    75         1.83333   0   1   1   4
    76         1.66667   0   0   2   4
    77               2   0   0   3   4
    78            1.25   0   0   0   5
    79            1.75   0   1   0   5
    80         1.58333   0   0   1   5
    81         1.91667   0   0   2   5
    82             1.5   0   0   0   6
    83               2   0   1   0   6
    84         1.83333   0   0   1   6
    85            1.75   0   0   0   7
    86               2   0   0   0   8
   MAX               2   2   4   6   8

  SGMGA_VCN
     I               Q   X
   MIN      -0.0833333   0   0   0   0
     1               0   0   0   0   0
     2               1   1   0   0   0
     3               2   2   0   0   0
     4             0.5   0   1   0   0
     5             1.5   1   1   0   0
     6               1   0   2   0   0
     7               2   1   2   0   0
     8             1.5   0   3   0   0
     9               2   0   4   0   0
    10        0.333333   0   0   1   0
    11         1.33333   1   0   1   0
    12        0.833333   0   1   1   0
    13         1.83333   1   1   1   0
    14         1.33333   0   2   1   0
    15         1.83333   0   3   1   0
    16        0.666667   0   0   2   0
    17         1.66667   1   0   2   0
    18         1.16667   0   1   2   0
    19         1.66667   0   2   2   0
    20               1   0   0   3   0
    21               2   1   0   3   0
    22             1.5   0   1   3   0
    23               2   0   2   3   0
    24         1.33333   0   0   4   0
    25         1.83333   0   1   4   0
    26         1.66667   0   0   5   0
    27               2   0   0   6   0
    28            0.25   0   0   0   1
    29            1.25   1   0   0   1
    30            0.75   0   1   0   1
    31            1.75   1   1   0   1
    32            1.25   0   2   0   1
    33            1.75   0   3   0   1
    34        0.583333   0   0   1   1
    35         1.58333   1   0   1   1
    36         1.08333   0   1   1   1
    37         1.58333   0   2   1   1
    38        0.916667   0   0   2   1
    39         1.91667   1   0   2   1
    40         1.41667   0   1   2   1
    41         1.91667   0   2   2   1
    42            1.25   0   0   3   1
    43            1.75   0   1   3   1
    44         1.58333   0   0   4   1
    45         1.91667   0   0   5   1
    46             0.5   0   0   0   2
    47             1.5   1   0   0   2
    48               1   0   1   0   2
    49               2   1   1   0   2
    50             1.5   0   2   0   2
    51               2   0   3   0   2
    52        0.833333   0   0   1   2
    53         1.83333   1   0   1   2
    54         1.33333   0   1   1   2
    55         1.83333   0   2   1   2
    56         1.16667   0   0   2   2
    57         1.66667   0   1   2   2
    58             1.5   0   0   3   2
    59               2   0   1   3   2
    60         1.83333   0   0   4   2
    61            0.75   0   0   0   3
    62            1.75   1   0   0   3
    63            1.25   0   1   0   3
    64            1.75   0   2   0   3
    65         1.08333   0   0   1   3
    66         1.58333   0   1   1   3
    67         1.41667   0   0   2   3
    68         1.91667   0   1   2   3
    69            1.75   0   0   3   3
    70               1   0   0   0   4
    71               2   1   0   0   4
    72             1.5   0   1   0   4
    73               2   0   2   0   4
    74         1.33333   0   0   1   4
    75         1.83333   0   1   1   4
    76         1.66667   0   0   2   4
    77               2   0   0   3   4
    78            1.25   0   0   0   5
    79            1.75   0   1   0   5
    80         1.58333   0   0   1   5
    81         1.91667   0   0   2   5
    82             1.5   0   0   0   6
    83               2   0   1   0   6
    84         1.83333   0   0   1   6
    85            1.75   0   0   0   7
    86               2   0   0   0   8
   MAX               2   2   4   6   8

SGMGA_VCN_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we just compare the results.

  IMPORTANCE:
               1               2               3               4
  LEVEL_WEIGHT:
               1             0.5        0.333333            0.25

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN        0.916667   0   0   0   0
     1               1   1   0   0   0
     2               2   2   0   0   0
     3               3   3   0   0   0
     4             1.5   1   1   0   0
     5             2.5   2   1   0   0
     6               1   0   2   0   0
     7               2   1   2   0   0
     8               3   2   2   0   0
     9             1.5   0   3   0   0
    10             2.5   1   3   0   0
    11               2   0   4   0   0
    12               3   1   4   0   0
    13             2.5   0   5   0   0
    14               3   0   6   0   0
    15         1.33333   1   0   1   0
    16         2.33333   2   0   1   0
    17         1.83333   1   1   1   0
    18         2.83333   2   1   1   0
    19         1.33333   0   2   1   0
    20         2.33333   1   2   1   0
    21         1.83333   0   3   1   0
    22         2.83333   1   3   1   0
    23         2.33333   0   4   1   0
    24         2.83333   0   5   1   0
    25         1.66667   1   0   2   0
    26         2.66667   2   0   2   0
    27         1.16667   0   1   2   0
    28         2.16667   1   1   2   0
    29         1.66667   0   2   2   0
    30         2.66667   1   2   2   0
    31         2.16667   0   3   2   0
    32         2.66667   0   4   2   0
    33               1   0   0   3   0
    34               2   1   0   3   0
    35               3   2   0   3   0
    36             1.5   0   1   3   0
    37             2.5   1   1   3   0
    38               2   0   2   3   0
    39               3   1   2   3   0
    40             2.5   0   3   3   0
    41               3   0   4   3   0
    42         1.33333   0   0   4   0
    43         2.33333   1   0   4   0
    44         1.83333   0   1   4   0
    45         2.83333   1   1   4   0
    46         2.33333   0   2   4   0
    47         2.83333   0   3   4   0
    48         1.66667   0   0   5   0
    49         2.66667   1   0   5   0
    50         2.16667   0   1   5   0
    51         2.66667   0   2   5   0
    52               2   0   0   6   0
    53               3   1   0   6   0
    54             2.5   0   1   6   0
    55               3   0   2   6   0
    56         2.33333   0   0   7   0
    57         2.83333   0   1   7   0
    58         2.66667   0   0   8   0
    59               3   0   0   9   0
    60            1.25   1   0   0   1
    61            2.25   2   0   0   1
    62            1.75   1   1   0   1
    63            2.75   2   1   0   1
    64            1.25   0   2   0   1
    65            2.25   1   2   0   1
    66            1.75   0   3   0   1
    67            2.75   1   3   0   1
    68            2.25   0   4   0   1
    69            2.75   0   5   0   1
    70         1.58333   1   0   1   1
    71         2.58333   2   0   1   1
    72         1.08333   0   1   1   1
    73         2.08333   1   1   1   1
    74         1.58333   0   2   1   1
    75         2.58333   1   2   1   1
    76         2.08333   0   3   1   1
    77         2.58333   0   4   1   1
    78         1.91667   1   0   2   1
    79         2.91667   2   0   2   1
    80         1.41667   0   1   2   1
    81         2.41667   1   1   2   1
    82         1.91667   0   2   2   1
    83         2.91667   1   2   2   1
    84         2.41667   0   3   2   1
    85         2.91667   0   4   2   1
    86            1.25   0   0   3   1
    87            2.25   1   0   3   1
    88            1.75   0   1   3   1
    89            2.75   1   1   3   1
    90            2.25   0   2   3   1
    91            2.75   0   3   3   1
    92         1.58333   0   0   4   1
    93         2.58333   1   0   4   1
    94         2.08333   0   1   4   1
    95         2.58333   0   2   4   1
    96         1.91667   0   0   5   1
    97         2.91667   1   0   5   1
    98         2.41667   0   1   5   1
    99         2.91667   0   2   5   1
   100            2.25   0   0   6   1
   101            2.75   0   1   6   1
   102         2.58333   0   0   7   1
   103         2.91667   0   0   8   1
   104             1.5   1   0   0   2
   105             2.5   2   0   0   2
   106               1   0   1   0   2
   107               2   1   1   0   2
   108               3   2   1   0   2
   109             1.5   0   2   0   2
   110             2.5   1   2   0   2
   111               2   0   3   0   2
   112               3   1   3   0   2
   113             2.5   0   4   0   2
   114               3   0   5   0   2
   115         1.83333   1   0   1   2
   116         2.83333   2   0   1   2
   117         1.33333   0   1   1   2
   118         2.33333   1   1   1   2
   119         1.83333   0   2   1   2
   120         2.83333   1   2   1   2
   121         2.33333   0   3   1   2
   122         2.83333   0   4   1   2
   123         1.16667   0   0   2   2
   124         2.16667   1   0   2   2
   125         1.66667   0   1   2   2
   126         2.66667   1   1   2   2
   127         2.16667   0   2   2   2
   128         2.66667   0   3   2   2
   129             1.5   0   0   3   2
   130             2.5   1   0   3   2
   131               2   0   1   3   2
   132               3   1   1   3   2
   133             2.5   0   2   3   2
   134               3   0   3   3   2
   135         1.83333   0   0   4   2
   136         2.83333   1   0   4   2
   137         2.33333   0   1   4   2
   138         2.83333   0   2   4   2
   139         2.16667   0   0   5   2
   140         2.66667   0   1   5   2
   141             2.5   0   0   6   2
   142               3   0   1   6   2
   143         2.83333   0   0   7   2
   144            1.75   1   0   0   3
   145            2.75   2   0   0   3
   146            1.25   0   1   0   3
   147            2.25   1   1   0   3
   148            1.75   0   2   0   3
   149            2.75   1   2   0   3
   150            2.25   0   3   0   3
   151            2.75   0   4   0   3
   152         1.08333   0   0   1   3
   153         2.08333   1   0   1   3
   154         1.58333   0   1   1   3
   155         2.58333   1   1   1   3
   156         2.08333   0   2   1   3
   157         2.58333   0   3   1   3
   158         1.41667   0   0   2   3
   159         2.41667   1   0   2   3
   160         1.91667   0   1   2   3
   161         2.91667   1   1   2   3
   162         2.41667   0   2   2   3
   163         2.91667   0   3   2   3
   164            1.75   0   0   3   3
   165            2.75   1   0   3   3
   166            2.25   0   1   3   3
   167            2.75   0   2   3   3
   168         2.08333   0   0   4   3
   169         2.58333   0   1   4   3
   170         2.41667   0   0   5   3
   171         2.91667   0   1   5   3
   172            2.75   0   0   6   3
   173               1   0   0   0   4
   174               2   1   0   0   4
   175               3   2   0   0   4
   176             1.5   0   1   0   4
   177             2.5   1   1   0   4
   178               2   0   2   0   4
   179               3   1   2   0   4
   180             2.5   0   3   0   4
   181               3   0   4   0   4
   182         1.33333   0   0   1   4
   183         2.33333   1   0   1   4
   184         1.83333   0   1   1   4
   185         2.83333   1   1   1   4
   186         2.33333   0   2   1   4
   187         2.83333   0   3   1   4
   188         1.66667   0   0   2   4
   189         2.66667   1   0   2   4
   190         2.16667   0   1   2   4
   191         2.66667   0   2   2   4
   192               2   0   0   3   4
   193               3   1   0   3   4
   194             2.5   0   1   3   4
   195               3   0   2   3   4
   196         2.33333   0   0   4   4
   197         2.83333   0   1   4   4
   198         2.66667   0   0   5   4
   199               3   0   0   6   4
   200            1.25   0   0   0   5
   201            2.25   1   0   0   5
   202            1.75   0   1   0   5
   203            2.75   1   1   0   5
   204            2.25   0   2   0   5
   205            2.75   0   3   0   5
   206         1.58333   0   0   1   5
   207         2.58333   1   0   1   5
   208         2.08333   0   1   1   5
   209         2.58333   0   2   1   5
   210         1.91667   0   0   2   5
   211         2.91667   1   0   2   5
   212         2.41667   0   1   2   5
   213         2.91667   0   2   2   5
   214            2.25   0   0   3   5
   215            2.75   0   1   3   5
   216         2.58333   0   0   4   5
   217         2.91667   0   0   5   5
   218             1.5   0   0   0   6
   219             2.5   1   0   0   6
   220               2   0   1   0   6
   221               3   1   1   0   6
   222             2.5   0   2   0   6
   223               3   0   3   0   6
   224         1.83333   0   0   1   6
   225         2.83333   1   0   1   6
   226         2.33333   0   1   1   6
   227         2.83333   0   2   1   6
   228         2.16667   0   0   2   6
   229         2.66667   0   1   2   6
   230             2.5   0   0   3   6
   231               3   0   1   3   6
   232         2.83333   0   0   4   6
   233            1.75   0   0   0   7
   234            2.75   1   0   0   7
   235            2.25   0   1   0   7
   236            2.75   0   2   0   7
   237         2.08333   0   0   1   7
   238         2.58333   0   1   1   7
   239         2.41667   0   0   2   7
   240         2.91667   0   1   2   7
   241            2.75   0   0   3   7
   242               2   0   0   0   8
   243               3   1   0   0   8
   244             2.5   0   1   0   8
   245               3   0   2   0   8
   246         2.33333   0   0   1   8
   247         2.83333   0   1   1   8
   248         2.66667   0   0   2   8
   249               3   0   0   3   8
   250            2.25   0   0   0   9
   251            2.75   0   1   0   9
   252         2.58333   0   0   1   9
   253         2.91667   0   0   2   9
   254             2.5   0   0   0  10
   255               3   0   1   0  10
   256         2.83333   0   0   1  10
   257            2.75   0   0   0  11
   258               3   0   0   0  12
   MAX               3   3   6   9  12

  SGMGA_VCN
     I               Q   X
   MIN        0.916667   0   0   0   0
     1               1   1   0   0   0
     2               2   2   0   0   0
     3               3   3   0   0   0
     4             1.5   1   1   0   0
     5             2.5   2   1   0   0
     6               1   0   2   0   0
     7               2   1   2   0   0
     8               3   2   2   0   0
     9             1.5   0   3   0   0
    10             2.5   1   3   0   0
    11               2   0   4   0   0
    12               3   1   4   0   0
    13             2.5   0   5   0   0
    14               3   0   6   0   0
    15         1.33333   1   0   1   0
    16         2.33333   2   0   1   0
    17         1.83333   1   1   1   0
    18         2.83333   2   1   1   0
    19         1.33333   0   2   1   0
    20         2.33333   1   2   1   0
    21         1.83333   0   3   1   0
    22         2.83333   1   3   1   0
    23         2.33333   0   4   1   0
    24         2.83333   0   5   1   0
    25         1.66667   1   0   2   0
    26         2.66667   2   0   2   0
    27         1.16667   0   1   2   0
    28         2.16667   1   1   2   0
    29         1.66667   0   2   2   0
    30         2.66667   1   2   2   0
    31         2.16667   0   3   2   0
    32         2.66667   0   4   2   0
    33               1   0   0   3   0
    34               2   1   0   3   0
    35               3   2   0   3   0
    36             1.5   0   1   3   0
    37             2.5   1   1   3   0
    38               2   0   2   3   0
    39               3   1   2   3   0
    40             2.5   0   3   3   0
    41               3   0   4   3   0
    42         1.33333   0   0   4   0
    43         2.33333   1   0   4   0
    44         1.83333   0   1   4   0
    45         2.83333   1   1   4   0
    46         2.33333   0   2   4   0
    47         2.83333   0   3   4   0
    48         1.66667   0   0   5   0
    49         2.66667   1   0   5   0
    50         2.16667   0   1   5   0
    51         2.66667   0   2   5   0
    52               2   0   0   6   0
    53               3   1   0   6   0
    54             2.5   0   1   6   0
    55               3   0   2   6   0
    56         2.33333   0   0   7   0
    57         2.83333   0   1   7   0
    58         2.66667   0   0   8   0
    59               3   0   0   9   0
    60            1.25   1   0   0   1
    61            2.25   2   0   0   1
    62            1.75   1   1   0   1
    63            2.75   2   1   0   1
    64            1.25   0   2   0   1
    65            2.25   1   2   0   1
    66            1.75   0   3   0   1
    67            2.75   1   3   0   1
    68            2.25   0   4   0   1
    69            2.75   0   5   0   1
    70         1.58333   1   0   1   1
    71         2.58333   2   0   1   1
    72         1.08333   0   1   1   1
    73         2.08333   1   1   1   1
    74         1.58333   0   2   1   1
    75         2.58333   1   2   1   1
    76         2.08333   0   3   1   1
    77         2.58333   0   4   1   1
    78         1.91667   1   0   2   1
    79         2.91667   2   0   2   1
    80         1.41667   0   1   2   1
    81         2.41667   1   1   2   1
    82         1.91667   0   2   2   1
    83         2.91667   1   2   2   1
    84         2.41667   0   3   2   1
    85         2.91667   0   4   2   1
    86            1.25   0   0   3   1
    87            2.25   1   0   3   1
    88            1.75   0   1   3   1
    89            2.75   1   1   3   1
    90            2.25   0   2   3   1
    91            2.75   0   3   3   1
    92         1.58333   0   0   4   1
    93         2.58333   1   0   4   1
    94         2.08333   0   1   4   1
    95         2.58333   0   2   4   1
    96         1.91667   0   0   5   1
    97         2.91667   1   0   5   1
    98         2.41667   0   1   5   1
    99         2.91667   0   2   5   1
   100            2.25   0   0   6   1
   101            2.75   0   1   6   1
   102         2.58333   0   0   7   1
   103         2.91667   0   0   8   1
   104             1.5   1   0   0   2
   105             2.5   2   0   0   2
   106               1   0   1   0   2
   107               2   1   1   0   2
   108               3   2   1   0   2
   109             1.5   0   2   0   2
   110             2.5   1   2   0   2
   111               2   0   3   0   2
   112               3   1   3   0   2
   113             2.5   0   4   0   2
   114               3   0   5   0   2
   115         1.83333   1   0   1   2
   116         2.83333   2   0   1   2
   117         1.33333   0   1   1   2
   118         2.33333   1   1   1   2
   119         1.83333   0   2   1   2
   120         2.83333   1   2   1   2
   121         2.33333   0   3   1   2
   122         2.83333   0   4   1   2
   123         1.16667   0   0   2   2
   124         2.16667   1   0   2   2
   125         1.66667   0   1   2   2
   126         2.66667   1   1   2   2
   127         2.16667   0   2   2   2
   128         2.66667   0   3   2   2
   129             1.5   0   0   3   2
   130             2.5   1   0   3   2
   131               2   0   1   3   2
   132               3   1   1   3   2
   133             2.5   0   2   3   2
   134               3   0   3   3   2
   135         1.83333   0   0   4   2
   136         2.83333   1   0   4   2
   137         2.33333   0   1   4   2
   138         2.83333   0   2   4   2
   139         2.16667   0   0   5   2
   140         2.66667   0   1   5   2
   141             2.5   0   0   6   2
   142               3   0   1   6   2
   143         2.83333   0   0   7   2
   144            1.75   1   0   0   3
   145            2.75   2   0   0   3
   146            1.25   0   1   0   3
   147            2.25   1   1   0   3
   148            1.75   0   2   0   3
   149            2.75   1   2   0   3
   150            2.25   0   3   0   3
   151            2.75   0   4   0   3
   152         1.08333   0   0   1   3
   153         2.08333   1   0   1   3
   154         1.58333   0   1   1   3
   155         2.58333   1   1   1   3
   156         2.08333   0   2   1   3
   157         2.58333   0   3   1   3
   158         1.41667   0   0   2   3
   159         2.41667   1   0   2   3
   160         1.91667   0   1   2   3
   161         2.91667   1   1   2   3
   162         2.41667   0   2   2   3
   163         2.91667   0   3   2   3
   164            1.75   0   0   3   3
   165            2.75   1   0   3   3
   166            2.25   0   1   3   3
   167            2.75   0   2   3   3
   168         2.08333   0   0   4   3
   169         2.58333   0   1   4   3
   170         2.41667   0   0   5   3
   171         2.91667   0   1   5   3
   172            2.75   0   0   6   3
   173               1   0   0   0   4
   174               2   1   0   0   4
   175               3   2   0   0   4
   176             1.5   0   1   0   4
   177             2.5   1   1   0   4
   178               2   0   2   0   4
   179               3   1   2   0   4
   180             2.5   0   3   0   4
   181               3   0   4   0   4
   182         1.33333   0   0   1   4
   183         2.33333   1   0   1   4
   184         1.83333   0   1   1   4
   185         2.83333   1   1   1   4
   186         2.33333   0   2   1   4
   187         2.83333   0   3   1   4
   188         1.66667   0   0   2   4
   189         2.66667   1   0   2   4
   190         2.16667   0   1   2   4
   191         2.66667   0   2   2   4
   192               2   0   0   3   4
   193               3   1   0   3   4
   194             2.5   0   1   3   4
   195               3   0   2   3   4
   196         2.33333   0   0   4   4
   197         2.83333   0   1   4   4
   198         2.66667   0   0   5   4
   199               3   0   0   6   4
   200            1.25   0   0   0   5
   201            2.25   1   0   0   5
   202            1.75   0   1   0   5
   203            2.75   1   1   0   5
   204            2.25   0   2   0   5
   205            2.75   0   3   0   5
   206         1.58333   0   0   1   5
   207         2.58333   1   0   1   5
   208         2.08333   0   1   1   5
   209         2.58333   0   2   1   5
   210         1.91667   0   0   2   5
   211         2.91667   1   0   2   5
   212         2.41667   0   1   2   5
   213         2.91667   0   2   2   5
   214            2.25   0   0   3   5
   215            2.75   0   1   3   5
   216         2.58333   0   0   4   5
   217         2.91667   0   0   5   5
   218             1.5   0   0   0   6
   219             2.5   1   0   0   6
   220               2   0   1   0   6
   221               3   1   1   0   6
   222             2.5   0   2   0   6
   223               3   0   3   0   6
   224         1.83333   0   0   1   6
   225         2.83333   1   0   1   6
   226         2.33333   0   1   1   6
   227         2.83333   0   2   1   6
   228         2.16667   0   0   2   6
   229         2.66667   0   1   2   6
   230             2.5   0   0   3   6
   231               3   0   1   3   6
   232         2.83333   0   0   4   6
   233            1.75   0   0   0   7
   234            2.75   1   0   0   7
   235            2.25   0   1   0   7
   236            2.75   0   2   0   7
   237         2.08333   0   0   1   7
   238         2.58333   0   1   1   7
   239         2.41667   0   0   2   7
   240         2.91667   0   1   2   7
   241            2.75   0   0   3   7
   242               2   0   0   0   8
   243               3   1   0   0   8
   244             2.5   0   1   0   8
   245               3   0   2   0   8
   246         2.33333   0   0   1   8
   247         2.83333   0   1   1   8
   248         2.66667   0   0   2   8
   249               3   0   0   3   8
   250            2.25   0   0   0   9
   251            2.75   0   1   0   9
   252         2.58333   0   0   1   9
   253         2.91667   0   0   2   9
   254             2.5   0   0   0  10
   255               3   0   1   0  10
   256         2.83333   0   0   1  10
   257            2.75   0   0   0  11
   258               3   0   0   0  12
   MAX               3   3   6   9  12

SGMGA_VCN_TIMING_TESTS
  calls SGMGA_VCN_TIMING_TEST.

SGMGA_VCN_TIMING_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we compare the timings.

  IMPORTANCE:
               1               1               1               1
  LEVEL_WEIGHT:
               1               1               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN              -2   0   0   0   0
   MAX               2   2   2   2   2
  TIME           4e-06

  SGMGA_VCN
     I               Q   X
   MIN              -2   0   0   0   0
   MAX               2   2   2   2   2
  TIME           3e-06

SGMGA_VCN_TIMING_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we compare the timings.

  IMPORTANCE:
               1               1               1               1               1               1               1               1
  LEVEL_WEIGHT:
               1               1               1               1               1               1               1               1

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN              -6   0   0   0   0   0   0   0   0
   MAX               2   2   2   2   2   2   2   2   2
  TIME        0.000314

  SGMGA_VCN
     I               Q   X
   MIN              -6   0   0   0   0   0   0   0   0
   MAX               2   2   2   2   2   2   2   2   2
  TIME         1.1e-05

SGMGA_VCN_TIMING_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we compare the timings.

  IMPORTANCE:
               1               2               3               4
  LEVEL_WEIGHT:
               1             0.5        0.333333            0.25

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN      -0.0833333   0   0   0   0
   MAX               2   2   4   6   8
  TIME         2.8e-05

  SGMGA_VCN
     I               Q   X
   MIN      -0.0833333   0   0   0   0
   MAX               2   2   4   6   8
  TIME           1e-05

SGMGA_VCN_TIMING_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept vectors for which Q_MIN < Q <= Q_MAX
  No particular order is imposed on the LEVEL_1D values.
  SGMGA_VCN_NAIVE uses a naive approach;
  SGMGA_VCN tries to be more efficient.
  Here, we compare the timings.

  IMPORTANCE:
               1               2               3               4               5               6               7               8
  LEVEL_WEIGHT:
               1             0.5        0.333333            0.25             0.2        0.166667        0.142857           0.125

  SGMGA_VCN_NAIVE
     I               Q   X
   MIN       -0.717857   0   0   0   0   0   0   0   0
   MAX               2   2   4   6   8  10  12  14  16
  TIME         1.56797

  SGMGA_VCN
     I               Q   X
   MIN       -0.717857   0   0   0   0   0   0   0   0
   MAX               2   2   4   6   8  10  12  14  16
  TIME        0.002582

SGMGA_VCN_ORDERED_TESTS
  calls SGMGA_VCN_ORDERED_TEST.

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               1
  LEVEL_WEIGHT:
               1               1

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN              -2   0   0
     1               0   0   0
   MAX               0   1   1

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN              -2   0   0
     1               0   0   0
   MAX               0   1   1

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               1
  LEVEL_WEIGHT:
               1               1

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN              -1   0   0
     1               0   0   0
     2               1   1   0
     3               1   0   1
   MAX               1   2   2

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN              -1   0   0
     1               0   0   0
     2               1   1   0
     3               1   0   1
   MAX               1   2   2

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               1
  LEVEL_WEIGHT:
               1               1

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN               0   0   0
     1               1   1   0
     2               1   0   1
     3               2   2   0
     4               2   1   1
     5               2   0   2
   MAX               2   3   3

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN               0   0   0
     1               1   1   0
     2               1   0   1
     3               2   2   0
     4               2   1   1
     5               2   0   2
   MAX               2   3   3

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               1
  LEVEL_WEIGHT:
               1               1

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN               1   0   0
     1               2   2   0
     2               2   1   1
     3               2   0   2
     4               3   3   0
     5               3   2   1
     6               3   1   2
     7               3   0   3
   MAX               3   4   4

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN               1   0   0
     1               2   2   0
     2               2   1   1
     3               2   0   2
     4               3   3   0
     5               3   2   1
     6               3   1   2
     7               3   0   3
   MAX               3   4   4

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               1
  LEVEL_WEIGHT:
               1               1

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN               2   0   0
     1               3   3   0
     2               3   2   1
     3               3   1   2
     4               3   0   3
     5               4   4   0
     6               4   3   1
     7               4   2   2
     8               4   1   3
     9               4   0   4
   MAX               4   5   5

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN               2   0   0
     1               3   3   0
     2               3   2   1
     3               3   1   2
     4               3   0   3
     5               4   4   0
     6               4   3   1
     7               4   2   2
     8               4   1   3
     9               4   0   4
   MAX               4   5   5

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               1               1
  LEVEL_WEIGHT:
               1               1               1

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN              -3   0   0   0
     1               0   0   0   0
   MAX               0   1   1   1

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN              -3   0   0   0
     1               0   0   0   0
   MAX               0   1   1   1

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               1               1
  LEVEL_WEIGHT:
               1               1               1

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN              -2   0   0   0
     1               0   0   0   0
     2               1   1   0   0
     3               1   0   1   0
     4               1   0   0   1
   MAX               1   2   2   2

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN              -2   0   0   0
     1               0   0   0   0
     2               1   1   0   0
     3               1   0   1   0
     4               1   0   0   1
   MAX               1   2   2   2

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               1               1
  LEVEL_WEIGHT:
               1               1               1

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN              -1   0   0   0
     1               0   0   0   0
     2               1   1   0   0
     3               1   0   1   0
     4               1   0   0   1
     5               2   2   0   0
     6               2   1   1   0
     7               2   0   2   0
     8               2   1   0   1
     9               2   0   1   1
    10               2   0   0   2
   MAX               2   3   3   3

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN              -1   0   0   0
     1               0   0   0   0
     2               1   1   0   0
     3               1   0   1   0
     4               1   0   0   1
     5               2   2   0   0
     6               2   1   1   0
     7               2   0   2   0
     8               2   1   0   1
     9               2   0   1   1
    10               2   0   0   2
   MAX               2   3   3   3

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               1               1
  LEVEL_WEIGHT:
               1               1               1

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN               0   0   0   0
     1               1   1   0   0
     2               1   0   1   0
     3               1   0   0   1
     4               2   2   0   0
     5               2   1   1   0
     6               2   0   2   0
     7               2   1   0   1
     8               2   0   1   1
     9               2   0   0   2
    10               3   3   0   0
    11               3   2   1   0
    12               3   1   2   0
    13               3   0   3   0
    14               3   2   0   1
    15               3   1   1   1
    16               3   0   2   1
    17               3   1   0   2
    18               3   0   1   2
    19               3   0   0   3
   MAX               3   4   4   4

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN               0   0   0   0
     1               1   1   0   0
     2               1   0   1   0
     3               1   0   0   1
     4               2   2   0   0
     5               2   1   1   0
     6               2   0   2   0
     7               2   1   0   1
     8               2   0   1   1
     9               2   0   0   2
    10               3   3   0   0
    11               3   2   1   0
    12               3   1   2   0
    13               3   0   3   0
    14               3   2   0   1
    15               3   1   1   1
    16               3   0   2   1
    17               3   1   0   2
    18               3   0   1   2
    19               3   0   0   3
   MAX               3   4   4   4

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               1               1
  LEVEL_WEIGHT:
               1               1               1

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN               1   0   0   0
     1               2   2   0   0
     2               2   1   1   0
     3               2   0   2   0
     4               2   1   0   1
     5               2   0   1   1
     6               2   0   0   2
     7               3   3   0   0
     8               3   2   1   0
     9               3   1   2   0
    10               3   0   3   0
    11               3   2   0   1
    12               3   1   1   1
    13               3   0   2   1
    14               3   1   0   2
    15               3   0   1   2
    16               3   0   0   3
    17               4   4   0   0
    18               4   3   1   0
    19               4   2   2   0
    20               4   1   3   0
    21               4   0   4   0
    22               4   3   0   1
    23               4   2   1   1
    24               4   1   2   1
    25               4   0   3   1
    26               4   2   0   2
    27               4   1   1   2
    28               4   0   2   2
    29               4   1   0   3
    30               4   0   1   3
    31               4   0   0   4
   MAX               4   5   5   5

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN               1   0   0   0
     1               2   2   0   0
     2               2   1   1   0
     3               2   0   2   0
     4               2   1   0   1
     5               2   0   1   1
     6               2   0   0   2
     7               3   3   0   0
     8               3   2   1   0
     9               3   1   2   0
    10               3   0   3   0
    11               3   2   0   1
    12               3   1   1   1
    13               3   0   2   1
    14               3   1   0   2
    15               3   0   1   2
    16               3   0   0   3
    17               4   4   0   0
    18               4   3   1   0
    19               4   2   2   0
    20               4   1   3   0
    21               4   0   4   0
    22               4   3   0   1
    23               4   2   1   1
    24               4   1   2   1
    25               4   0   3   1
    26               4   2   0   2
    27               4   1   1   2
    28               4   0   2   2
    29               4   1   0   3
    30               4   0   1   3
    31               4   0   0   4
   MAX               4   5   5   5

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               1               1               1
  LEVEL_WEIGHT:
               1               1               1               1

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN              -2   0   0   0   0
     1               0   0   0   0   0
     2               1   1   0   0   0
     3               1   0   1   0   0
     4               1   0   0   1   0
     5               1   0   0   0   1
     6               2   2   0   0   0
     7               2   1   1   0   0
     8               2   0   2   0   0
     9               2   1   0   1   0
    10               2   0   1   1   0
    11               2   0   0   2   0
    12               2   1   0   0   1
    13               2   0   1   0   1
    14               2   0   0   1   1
    15               2   0   0   0   2
   MAX               2   3   3   3   3

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN              -2   0   0   0   0
     1               0   0   0   0   0
     2               1   1   0   0   0
     3               1   0   1   0   0
     4               1   0   0   1   0
     5               1   0   0   0   1
     6               2   2   0   0   0
     7               2   1   1   0   0
     8               2   0   2   0   0
     9               2   1   0   1   0
    10               2   0   1   1   0
    11               2   0   0   2   0
    12               2   1   0   0   1
    13               2   0   1   0   1
    14               2   0   0   1   1
    15               2   0   0   0   2
   MAX               2   3   3   3   3

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               1               1               1
  LEVEL_WEIGHT:
               1               1               1               1

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN              -1   0   0   0   0
     1               0   0   0   0   0
     2               1   1   0   0   0
     3               1   0   1   0   0
     4               1   0   0   1   0
     5               1   0   0   0   1
     6               2   2   0   0   0
     7               2   1   1   0   0
     8               2   0   2   0   0
     9               2   1   0   1   0
    10               2   0   1   1   0
    11               2   0   0   2   0
    12               2   1   0   0   1
    13               2   0   1   0   1
    14               2   0   0   1   1
    15               2   0   0   0   2
    16               3   3   0   0   0
    17               3   2   1   0   0
    18               3   1   2   0   0
    19               3   0   3   0   0
    20               3   2   0   1   0
    21               3   1   1   1   0
    22               3   0   2   1   0
    23               3   1   0   2   0
    24               3   0   1   2   0
    25               3   0   0   3   0
    26               3   2   0   0   1
    27               3   1   1   0   1
    28               3   0   2   0   1
    29               3   1   0   1   1
    30               3   0   1   1   1
    31               3   0   0   2   1
    32               3   1   0   0   2
    33               3   0   1   0   2
    34               3   0   0   1   2
    35               3   0   0   0   3
   MAX               3   4   4   4   4

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN              -1   0   0   0   0
     1               0   0   0   0   0
     2               1   1   0   0   0
     3               1   0   1   0   0
     4               1   0   0   1   0
     5               1   0   0   0   1
     6               2   2   0   0   0
     7               2   1   1   0   0
     8               2   0   2   0   0
     9               2   1   0   1   0
    10               2   0   1   1   0
    11               2   0   0   2   0
    12               2   1   0   0   1
    13               2   0   1   0   1
    14               2   0   0   1   1
    15               2   0   0   0   2
    16               3   3   0   0   0
    17               3   2   1   0   0
    18               3   1   2   0   0
    19               3   0   3   0   0
    20               3   2   0   1   0
    21               3   1   1   1   0
    22               3   0   2   1   0
    23               3   1   0   2   0
    24               3   0   1   2   0
    25               3   0   0   3   0
    26               3   2   0   0   1
    27               3   1   1   0   1
    28               3   0   2   0   1
    29               3   1   0   1   1
    30               3   0   1   1   1
    31               3   0   0   2   1
    32               3   1   0   0   2
    33               3   0   1   0   2
    34               3   0   0   1   2
    35               3   0   0   0   3
   MAX               3   4   4   4   4

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               2
  LEVEL_WEIGHT:
               1             0.5

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN            -1.5   0   0
     1               0   0   0
   MAX               0   1   1

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN            -1.5   0   0
     1               0   0   0
   MAX               0   1   1

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               2
  LEVEL_WEIGHT:
               1             0.5

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN            -0.5   0   0
     1               0   0   0
     2             0.5   0   1
     3               1   1   0
     4               1   0   2
   MAX               1   2   3

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN            -0.5   0   0
     1               0   0   0
     2             0.5   0   1
     3               1   1   0
     4               1   0   2
   MAX               1   2   3

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               2
  LEVEL_WEIGHT:
               1             0.5

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN             0.5   0   0
     1               1   1   0
     2             1.5   1   1
     3               1   0   2
     4             1.5   0   3
     5               2   2   0
     6               2   1   2
     7               2   0   4
   MAX               2   3   5

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN             0.5   0   0
     1               1   1   0
     2             1.5   1   1
     3               1   0   2
     4             1.5   0   3
     5               2   2   0
     6               2   1   2
     7               2   0   4
   MAX               2   3   5

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               2
  LEVEL_WEIGHT:
               1             0.5

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN             1.5   0   0
     1               2   2   0
     2             2.5   2   1
     3               2   1   2
     4             2.5   1   3
     5               2   0   4
     6             2.5   0   5
     7               3   3   0
     8               3   2   2
     9               3   1   4
    10               3   0   6
   MAX               3   4   7

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN             1.5   0   0
     1               2   2   0
     2             2.5   2   1
     3               2   1   2
     4             2.5   1   3
     5               2   0   4
     6             2.5   0   5
     7               3   3   0
     8               3   2   2
     9               3   1   4
    10               3   0   6
   MAX               3   4   7

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               2
  LEVEL_WEIGHT:
               1             0.5

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN             2.5   0   0
     1               3   3   0
     2             3.5   3   1
     3               3   2   2
     4             3.5   2   3
     5               3   1   4
     6             3.5   1   5
     7               3   0   6
     8             3.5   0   7
     9               4   4   0
    10               4   3   2
    11               4   2   4
    12               4   1   6
    13               4   0   8
   MAX               4   5   9

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN             2.5   0   0
     1               3   3   0
     2             3.5   3   1
     3               3   2   2
     4             3.5   2   3
     5               3   1   4
     6             3.5   1   5
     7               3   0   6
     8             3.5   0   7
     9               4   4   0
    10               4   3   2
    11               4   2   4
    12               4   1   6
    13               4   0   8
   MAX               4   5   9

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               2               3
  LEVEL_WEIGHT:
               1             0.5        0.333333

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN        -1.83333   0   0   0
     1               0   0   0   0
   MAX               0   1   1   1

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN        -1.83333   0   0   0
     1               0   0   0   0
   MAX               0   1   1   1

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               2               3
  LEVEL_WEIGHT:
               1             0.5        0.333333

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN       -0.833333   0   0   0
     1               0   0   0   0
     2               1   1   0   0
     3             0.5   0   1   0
     4               1   0   2   0
     5        0.333333   0   0   1
     6        0.833333   0   1   1
     7        0.666667   0   0   2
     8               1   0   0   3
   MAX               1   2   3   4

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN       -0.833333   0   0   0
     1               0   0   0   0
     2               1   1   0   0
     3             0.5   0   1   0
     4               1   0   2   0
     5        0.333333   0   0   1
     6        0.833333   0   1   1
     7        0.666667   0   0   2
     8               1   0   0   3
   MAX               1   2   3   4

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               2               3
  LEVEL_WEIGHT:
               1             0.5        0.333333

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN        0.166667   0   0   0
     1               1   1   0   0
     2             0.5   0   1   0
     3               1   0   2   0
     4        0.333333   0   0   1
     5        0.833333   0   1   1
     6        0.666667   0   0   2
     7         1.16667   0   1   2
     8               1   0   0   3
     9               2   2   0   0
    10             1.5   1   1   0
    11               2   1   2   0
    12             1.5   0   3   0
    13               2   0   4   0
    14         1.33333   1   0   1
    15         1.83333   1   1   1
    16         1.33333   0   2   1
    17         1.83333   0   3   1
    18         1.66667   1   0   2
    19         1.66667   0   2   2
    20               2   1   0   3
    21             1.5   0   1   3
    22               2   0   2   3
    23         1.33333   0   0   4
    24         1.83333   0   1   4
    25         1.66667   0   0   5
    26               2   0   0   6
   MAX               2   3   5   7

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN        0.166667   0   0   0
     1               1   1   0   0
     2             0.5   0   1   0
     3               1   0   2   0
     4        0.333333   0   0   1
     5        0.833333   0   1   1
     6        0.666667   0   0   2
     7         1.16667   0   1   2
     8               1   0   0   3
     9               2   2   0   0
    10             1.5   1   1   0
    11               2   1   2   0
    12             1.5   0   3   0
    13               2   0   4   0
    14         1.33333   1   0   1
    15         1.83333   1   1   1
    16         1.33333   0   2   1
    17         1.83333   0   3   1
    18         1.66667   1   0   2
    19         1.66667   0   2   2
    20               2   1   0   3
    21             1.5   0   1   3
    22               2   0   2   3
    23         1.33333   0   0   4
    24         1.83333   0   1   4
    25         1.66667   0   0   5
    26               2   0   0   6
   MAX               2   3   5   7

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               2               3
  LEVEL_WEIGHT:
               1             0.5        0.333333

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN         1.16667   0   0   0
     1               2   2   0   0
     2             1.5   1   1   0
     3               2   1   2   0
     4             1.5   0   3   0
     5               2   0   4   0
     6         1.33333   1   0   1
     7         1.83333   1   1   1
     8         1.33333   0   2   1
     9         1.83333   0   3   1
    10         1.66667   1   0   2
    11         2.16667   1   1   2
    12         1.66667   0   2   2
    13         2.16667   0   3   2
    14               2   1   0   3
    15             1.5   0   1   3
    16               2   0   2   3
    17         1.33333   0   0   4
    18         1.83333   0   1   4
    19         1.66667   0   0   5
    20         2.16667   0   1   5
    21               2   0   0   6
    22               3   3   0   0
    23             2.5   2   1   0
    24               3   2   2   0
    25             2.5   1   3   0
    26               3   1   4   0
    27             2.5   0   5   0
    28               3   0   6   0
    29         2.33333   2   0   1
    30         2.83333   2   1   1
    31         2.33333   1   2   1
    32         2.83333   1   3   1
    33         2.33333   0   4   1
    34         2.83333   0   5   1
    35         2.66667   2   0   2
    36         2.66667   1   2   2
    37         2.66667   0   4   2
    38               3   2   0   3
    39             2.5   1   1   3
    40               3   1   2   3
    41             2.5   0   3   3
    42               3   0   4   3
    43         2.33333   1   0   4
    44         2.83333   1   1   4
    45         2.33333   0   2   4
    46         2.83333   0   3   4
    47         2.66667   1   0   5
    48         2.66667   0   2   5
    49               3   1   0   6
    50             2.5   0   1   6
    51               3   0   2   6
    52         2.33333   0   0   7
    53         2.83333   0   1   7
    54         2.66667   0   0   8
    55               3   0   0   9
   MAX               3   4   7  10

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN         1.16667   0   0   0
     1               2   2   0   0
     2             1.5   1   1   0
     3               2   1   2   0
     4             1.5   0   3   0
     5               2   0   4   0
     6         1.33333   1   0   1
     7         1.83333   1   1   1
     8         1.33333   0   2   1
     9         1.83333   0   3   1
    10         1.66667   1   0   2
    11         2.16667   1   1   2
    12         1.66667   0   2   2
    13         2.16667   0   3   2
    14               2   1   0   3
    15             1.5   0   1   3
    16               2   0   2   3
    17         1.33333   0   0   4
    18         1.83333   0   1   4
    19         1.66667   0   0   5
    20         2.16667   0   1   5
    21               2   0   0   6
    22               3   3   0   0
    23             2.5   2   1   0
    24               3   2   2   0
    25             2.5   1   3   0
    26               3   1   4   0
    27             2.5   0   5   0
    28               3   0   6   0
    29         2.33333   2   0   1
    30         2.83333   2   1   1
    31         2.33333   1   2   1
    32         2.83333   1   3   1
    33         2.33333   0   4   1
    34         2.83333   0   5   1
    35         2.66667   2   0   2
    36         2.66667   1   2   2
    37         2.66667   0   4   2
    38               3   2   0   3
    39             2.5   1   1   3
    40               3   1   2   3
    41             2.5   0   3   3
    42               3   0   4   3
    43         2.33333   1   0   4
    44         2.83333   1   1   4
    45         2.33333   0   2   4
    46         2.83333   0   3   4
    47         2.66667   1   0   5
    48         2.66667   0   2   5
    49               3   1   0   6
    50             2.5   0   1   6
    51               3   0   2   6
    52         2.33333   0   0   7
    53         2.83333   0   1   7
    54         2.66667   0   0   8
    55               3   0   0   9
   MAX               3   4   7  10

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               2               3
  LEVEL_WEIGHT:
               1             0.5        0.333333

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN         2.16667   0   0   0
     1               3   3   0   0
     2             2.5   2   1   0
     3               3   2   2   0
     4             2.5   1   3   0
     5               3   1   4   0
     6             2.5   0   5   0
     7               3   0   6   0
     8         2.33333   2   0   1
     9         2.83333   2   1   1
    10         2.33333   1   2   1
    11         2.83333   1   3   1
    12         2.33333   0   4   1
    13         2.83333   0   5   1
    14         2.66667   2   0   2
    15         3.16667   2   1   2
    16         2.66667   1   2   2
    17         3.16667   1   3   2
    18         2.66667   0   4   2
    19         3.16667   0   5   2
    20               3   2   0   3
    21             2.5   1   1   3
    22               3   1   2   3
    23             2.5   0   3   3
    24               3   0   4   3
    25         2.33333   1   0   4
    26         2.83333   1   1   4
    27         2.33333   0   2   4
    28         2.83333   0   3   4
    29         2.66667   1   0   5
    30         3.16667   1   1   5
    31         2.66667   0   2   5
    32         3.16667   0   3   5
    33               3   1   0   6
    34             2.5   0   1   6
    35               3   0   2   6
    36         2.33333   0   0   7
    37         2.83333   0   1   7
    38         2.66667   0   0   8
    39         3.16667   0   1   8
    40               3   0   0   9
    41               4   4   0   0
    42             3.5   3   1   0
    43               4   3   2   0
    44             3.5   2   3   0
    45               4   2   4   0
    46             3.5   1   5   0
    47               4   1   6   0
    48             3.5   0   7   0
    49               4   0   8   0
    50         3.33333   3   0   1
    51         3.83333   3   1   1
    52         3.33333   2   2   1
    53         3.83333   2   3   1
    54         3.33333   1   4   1
    55         3.83333   1   5   1
    56         3.33333   0   6   1
    57         3.83333   0   7   1
    58         3.66667   3   0   2
    59         3.66667   2   2   2
    60         3.66667   1   4   2
    61         3.66667   0   6   2
    62               4   3   0   3
    63             3.5   2   1   3
    64               4   2   2   3
    65             3.5   1   3   3
    66               4   1   4   3
    67             3.5   0   5   3
    68               4   0   6   3
    69         3.33333   2   0   4
    70         3.83333   2   1   4
    71         3.33333   1   2   4
    72         3.83333   1   3   4
    73         3.33333   0   4   4
    74         3.83333   0   5   4
    75         3.66667   2   0   5
    76         3.66667   1   2   5
    77         3.66667   0   4   5
    78               4   2   0   6
    79             3.5   1   1   6
    80               4   1   2   6
    81             3.5   0   3   6
    82               4   0   4   6
    83         3.33333   1   0   7
    84         3.83333   1   1   7
    85         3.33333   0   2   7
    86         3.83333   0   3   7
    87         3.66667   1   0   8
    88         3.66667   0   2   8
    89               4   1   0   9
    90             3.5   0   1   9
    91               4   0   2   9
    92         3.33333   0   0  10
    93         3.83333   0   1  10
    94         3.66667   0   0  11
    95               4   0   0  12
   MAX               4   5   9  13

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN         2.16667   0   0   0
     1               3   3   0   0
     2             2.5   2   1   0
     3               3   2   2   0
     4             2.5   1   3   0
     5               3   1   4   0
     6             2.5   0   5   0
     7               3   0   6   0
     8         2.33333   2   0   1
     9         2.83333   2   1   1
    10         2.33333   1   2   1
    11         2.83333   1   3   1
    12         2.33333   0   4   1
    13         2.83333   0   5   1
    14         2.66667   2   0   2
    15         3.16667   2   1   2
    16         2.66667   1   2   2
    17         3.16667   1   3   2
    18         2.66667   0   4   2
    19         3.16667   0   5   2
    20               3   2   0   3
    21             2.5   1   1   3
    22               3   1   2   3
    23             2.5   0   3   3
    24               3   0   4   3
    25         2.33333   1   0   4
    26         2.83333   1   1   4
    27         2.33333   0   2   4
    28         2.83333   0   3   4
    29         2.66667   1   0   5
    30         3.16667   1   1   5
    31         2.66667   0   2   5
    32         3.16667   0   3   5
    33               3   1   0   6
    34             2.5   0   1   6
    35               3   0   2   6
    36         2.33333   0   0   7
    37         2.83333   0   1   7
    38         2.66667   0   0   8
    39         3.16667   0   1   8
    40               3   0   0   9
    41               4   4   0   0
    42             3.5   3   1   0
    43               4   3   2   0
    44             3.5   2   3   0
    45               4   2   4   0
    46             3.5   1   5   0
    47               4   1   6   0
    48             3.5   0   7   0
    49               4   0   8   0
    50         3.33333   3   0   1
    51         3.83333   3   1   1
    52         3.33333   2   2   1
    53         3.83333   2   3   1
    54         3.33333   1   4   1
    55         3.83333   1   5   1
    56         3.33333   0   6   1
    57         3.83333   0   7   1
    58         3.66667   3   0   2
    59         3.66667   2   2   2
    60         3.66667   1   4   2
    61         3.66667   0   6   2
    62               4   3   0   3
    63             3.5   2   1   3
    64               4   2   2   3
    65             3.5   1   3   3
    66               4   1   4   3
    67             3.5   0   5   3
    68               4   0   6   3
    69         3.33333   2   0   4
    70         3.83333   2   1   4
    71         3.33333   1   2   4
    72         3.83333   1   3   4
    73         3.33333   0   4   4
    74         3.83333   0   5   4
    75         3.66667   2   0   5
    76         3.66667   1   2   5
    77         3.66667   0   4   5
    78               4   2   0   6
    79             3.5   1   1   6
    80               4   1   2   6
    81             3.5   0   3   6
    82               4   0   4   6
    83         3.33333   1   0   7
    84         3.83333   1   1   7
    85         3.33333   0   2   7
    86         3.83333   0   3   7
    87         3.66667   1   0   8
    88         3.66667   0   2   8
    89               4   1   0   9
    90             3.5   0   1   9
    91               4   0   2   9
    92         3.33333   0   0  10
    93         3.83333   0   1  10
    94         3.66667   0   0  11
    95               4   0   0  12
   MAX               4   5   9  13

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               2               3               4
  LEVEL_WEIGHT:
               1             0.5        0.333333            0.25

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN      -0.0833333   0   0   0   0
     1               0   0   0   0   0
     2             0.5   0   1   0   0
     3        0.333333   0   0   1   0
     4        0.833333   0   1   1   0
     5        0.666667   0   0   2   0
     6            0.25   0   0   0   1
     7            0.75   0   1   0   1
     8        0.583333   0   0   1   1
     9        0.916667   0   0   2   1
    10             0.5   0   0   0   2
    11        0.833333   0   0   1   2
    12            0.75   0   0   0   3
    13               1   1   0   0   0
    14             1.5   1   1   0   0
    15               1   0   2   0   0
    16             1.5   0   3   0   0
    17         1.33333   1   0   1   0
    18         1.83333   1   1   1   0
    19         1.33333   0   2   1   0
    20         1.83333   0   3   1   0
    21         1.66667   1   0   2   0
    22         1.16667   0   1   2   0
    23         1.66667   0   2   2   0
    24               1   0   0   3   0
    25             1.5   0   1   3   0
    26         1.33333   0   0   4   0
    27         1.83333   0   1   4   0
    28         1.66667   0   0   5   0
    29            1.25   1   0   0   1
    30            1.75   1   1   0   1
    31            1.25   0   2   0   1
    32            1.75   0   3   0   1
    33         1.58333   1   0   1   1
    34         1.08333   0   1   1   1
    35         1.58333   0   2   1   1
    36         1.91667   1   0   2   1
    37         1.41667   0   1   2   1
    38         1.91667   0   2   2   1
    39            1.25   0   0   3   1
    40            1.75   0   1   3   1
    41         1.58333   0   0   4   1
    42         1.91667   0   0   5   1
    43             1.5   1   0   0   2
    44               1   0   1   0   2
    45             1.5   0   2   0   2
    46         1.83333   1   0   1   2
    47         1.33333   0   1   1   2
    48         1.83333   0   2   1   2
    49         1.16667   0   0   2   2
    50         1.66667   0   1   2   2
    51             1.5   0   0   3   2
    52         1.83333   0   0   4   2
    53            1.75   1   0   0   3
    54            1.25   0   1   0   3
    55            1.75   0   2   0   3
    56         1.08333   0   0   1   3
    57         1.58333   0   1   1   3
    58         1.41667   0   0   2   3
    59         1.91667   0   1   2   3
    60            1.75   0   0   3   3
    61               1   0   0   0   4
    62             1.5   0   1   0   4
    63         1.33333   0   0   1   4
    64         1.83333   0   1   1   4
    65         1.66667   0   0   2   4
    66            1.25   0   0   0   5
    67            1.75   0   1   0   5
    68         1.58333   0   0   1   5
    69         1.91667   0   0   2   5
    70             1.5   0   0   0   6
    71         1.83333   0   0   1   6
    72            1.75   0   0   0   7
    73               2   2   0   0   0
    74               2   1   2   0   0
    75               2   0   4   0   0
    76               2   1   0   3   0
    77               2   0   2   3   0
    78               2   0   0   6   0
    79               2   1   1   0   2
    80               2   0   3   0   2
    81               2   0   1   3   2
    82               2   1   0   0   4
    83               2   0   2   0   4
    84               2   0   0   3   4
    85               2   0   1   0   6
    86               2   0   0   0   8
   MAX               2   3   5   7   9

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN      -0.0833333   0   0   0   0
     1               0   0   0   0   0
     2             0.5   0   1   0   0
     3        0.333333   0   0   1   0
     4        0.833333   0   1   1   0
     5        0.666667   0   0   2   0
     6            0.25   0   0   0   1
     7            0.75   0   1   0   1
     8        0.583333   0   0   1   1
     9        0.916667   0   0   2   1
    10             0.5   0   0   0   2
    11        0.833333   0   0   1   2
    12            0.75   0   0   0   3
    13               1   1   0   0   0
    14             1.5   1   1   0   0
    15               1   0   2   0   0
    16             1.5   0   3   0   0
    17         1.33333   1   0   1   0
    18         1.83333   1   1   1   0
    19         1.33333   0   2   1   0
    20         1.83333   0   3   1   0
    21         1.66667   1   0   2   0
    22         1.16667   0   1   2   0
    23         1.66667   0   2   2   0
    24               1   0   0   3   0
    25             1.5   0   1   3   0
    26         1.33333   0   0   4   0
    27         1.83333   0   1   4   0
    28         1.66667   0   0   5   0
    29            1.25   1   0   0   1
    30            1.75   1   1   0   1
    31            1.25   0   2   0   1
    32            1.75   0   3   0   1
    33         1.58333   1   0   1   1
    34         1.08333   0   1   1   1
    35         1.58333   0   2   1   1
    36         1.91667   1   0   2   1
    37         1.41667   0   1   2   1
    38         1.91667   0   2   2   1
    39            1.25   0   0   3   1
    40            1.75   0   1   3   1
    41         1.58333   0   0   4   1
    42         1.91667   0   0   5   1
    43             1.5   1   0   0   2
    44               1   0   1   0   2
    45             1.5   0   2   0   2
    46         1.83333   1   0   1   2
    47         1.33333   0   1   1   2
    48         1.83333   0   2   1   2
    49         1.16667   0   0   2   2
    50         1.66667   0   1   2   2
    51             1.5   0   0   3   2
    52         1.83333   0   0   4   2
    53            1.75   1   0   0   3
    54            1.25   0   1   0   3
    55            1.75   0   2   0   3
    56         1.08333   0   0   1   3
    57         1.58333   0   1   1   3
    58         1.41667   0   0   2   3
    59         1.91667   0   1   2   3
    60            1.75   0   0   3   3
    61               1   0   0   0   4
    62             1.5   0   1   0   4
    63         1.33333   0   0   1   4
    64         1.83333   0   1   1   4
    65         1.66667   0   0   2   4
    66            1.25   0   0   0   5
    67            1.75   0   1   0   5
    68         1.58333   0   0   1   5
    69         1.91667   0   0   2   5
    70             1.5   0   0   0   6
    71         1.83333   0   0   1   6
    72            1.75   0   0   0   7
    73               2   2   0   0   0
    74               2   1   2   0   0
    75               2   0   4   0   0
    76               2   1   0   3   0
    77               2   0   2   3   0
    78               2   0   0   6   0
    79               2   1   1   0   2
    80               2   0   3   0   2
    81               2   0   1   3   2
    82               2   1   0   0   4
    83               2   0   2   0   4
    84               2   0   0   3   4
    85               2   0   1   0   6
    86               2   0   0   0   8
   MAX               2   3   5   7   9

SGMGA_VCN_ORDERED_TEST
  Consider vectors 0 <= LEVEL_1D(1:N) <= LEVEL_1D_MAX(1:N),
  Set Q = sum ( LEVEL_WEIGHT(1:N) * LEVEL_1D(1:N) )
  Accept only vectors for which Q_MIN < Q <= Q_MAX
  The solutions are weakly ordered by the value of Q.
  SGMGA_VCN_ORDERED_NAIVE calls SGMGA_VCN_NAIVE;
  SGMGA_VCN_ORDERED calls SGMGA_VCN.

  IMPORTANCE:
               1               2               3               4
  LEVEL_WEIGHT:
               1             0.5        0.333333            0.25

  SGMGA_VCN_ORDERED_NAIVE:
     I               Q   X
   MIN        0.916667   0   0   0   0
     1               1   1   0   0   0
     2             1.5   1   1   0   0
     3               1   0   2   0   0
     4             1.5   0   3   0   0
     5         1.33333   1   0   1   0
     6         1.83333   1   1   1   0
     7         1.33333   0   2   1   0
     8         1.83333   0   3   1   0
     9         1.66667   1   0   2   0
    10         1.16667   0   1   2   0
    11         1.66667   0   2   2   0
    12               1   0   0   3   0
    13             1.5   0   1   3   0
    14         1.33333   0   0   4   0
    15         1.83333   0   1   4   0
    16         1.66667   0   0   5   0
    17            1.25   1   0   0   1
    18            1.75   1   1   0   1
    19            1.25   0   2   0   1
    20            1.75   0   3   0   1
    21         1.58333   1   0   1   1
    22         1.08333   0   1   1   1
    23         1.58333   0   2   1   1
    24         1.91667   1   0   2   1
    25         1.41667   0   1   2   1
    26         1.91667   0   2   2   1
    27            1.25   0   0   3   1
    28            1.75   0   1   3   1
    29         1.58333   0   0   4   1
    30         1.91667   0   0   5   1
    31             1.5   1   0   0   2
    32               1   0   1   0   2
    33             1.5   0   2   0   2
    34         1.83333   1   0   1   2
    35         1.33333   0   1   1   2
    36         1.83333   0   2   1   2
    37         1.16667   0   0   2   2
    38         1.66667   0   1   2   2
    39             1.5   0   0   3   2
    40         1.83333   0   0   4   2
    41            1.75   1   0   0   3
    42            1.25   0   1   0   3
    43            1.75   0   2   0   3
    44         1.08333   0   0   1   3
    45         1.58333   0   1   1   3
    46         1.41667   0   0   2   3
    47         1.91667   0   1   2   3
    48            1.75   0   0   3   3
    49               1   0   0   0   4
    50             1.5   0   1   0   4
    51         1.33333   0   0   1   4
    52         1.83333   0   1   1   4
    53         1.66667   0   0   2   4
    54            1.25   0   0   0   5
    55            1.75   0   1   0   5
    56         1.58333   0   0   1   5
    57         1.91667   0   0   2   5
    58             1.5   0   0   0   6
    59         1.83333   0   0   1   6
    60            1.75   0   0   0   7
    61               2   2   0   0   0
    62             2.5   2   1   0   0
    63               2   1   2   0   0
    64             2.5   1   3   0   0
    65               2   0   4   0   0
    66             2.5   0   5   0   0
    67         2.33333   2   0   1   0
    68         2.83333   2   1   1   0
    69         2.33333   1   2   1   0
    70         2.83333   1   3   1   0
    71         2.33333   0   4   1   0
    72         2.83333   0   5   1   0
    73         2.66667   2   0   2   0
    74         2.16667   1   1   2   0
    75         2.66667   1   2   2   0
    76         2.16667   0   3   2   0
    77         2.66667   0   4   2   0
    78               2   1   0   3   0
    79             2.5   1   1   3   0
    80               2   0   2   3   0
    81             2.5   0   3   3   0
    82         2.33333   1   0   4   0
    83         2.83333   1   1   4   0
    84         2.33333   0   2   4   0
    85         2.83333   0   3   4   0
    86         2.66667   1   0   5   0
    87         2.16667   0   1   5   0
    88         2.66667   0   2   5   0
    89               2   0   0   6   0
    90             2.5   0   1   6   0
    91         2.33333   0   0   7   0
    92         2.83333   0   1   7   0
    93         2.66667   0   0   8   0
    94            2.25   2   0   0   1
    95            2.75   2   1   0   1
    96            2.25   1   2   0   1
    97            2.75   1   3   0   1
    98            2.25   0   4   0   1
    99            2.75   0   5   0   1
   100         2.58333   2   0   1   1
   101         2.08333   1   1   1   1
   102         2.58333   1   2   1   1
   103         2.08333   0   3   1   1
   104         2.58333   0   4   1   1
   105         2.91667   2   0   2   1
   106         2.41667   1   1   2   1
   107         2.91667   1   2   2   1
   108         2.41667   0   3   2   1
   109         2.91667   0   4   2   1
   110            2.25   1   0   3   1
   111            2.75   1   1   3   1
   112            2.25   0   2   3   1
   113            2.75   0   3   3   1
   114         2.58333   1   0   4   1
   115         2.08333   0   1   4   1
   116         2.58333   0   2   4   1
   117         2.91667   1   0   5   1
   118         2.41667   0   1   5   1
   119         2.91667   0   2   5   1
   120            2.25   0   0   6   1
   121            2.75   0   1   6   1
   122         2.58333   0   0   7   1
   123         2.91667   0   0   8   1
   124             2.5   2   0   0   2
   125               2   1   1   0   2
   126             2.5   1   2   0   2
   127               2   0   3   0   2
   128             2.5   0   4   0   2
   129         2.83333   2   0   1   2
   130         2.33333   1   1   1   2
   131         2.83333   1   2   1   2
   132         2.33333   0   3   1   2
   133         2.83333   0   4   1   2
   134         2.16667   1   0   2   2
   135         2.66667   1   1   2   2
   136         2.16667   0   2   2   2
   137         2.66667   0   3   2   2
   138             2.5   1   0   3   2
   139               2   0   1   3   2
   140             2.5   0   2   3   2
   141         2.83333   1   0   4   2
   142         2.33333   0   1   4   2
   143         2.83333   0   2   4   2
   144         2.16667   0   0   5   2
   145         2.66667   0   1   5   2
   146             2.5   0   0   6   2
   147         2.83333   0   0   7   2
   148            2.75   2   0   0   3
   149            2.25   1   1   0   3
   150            2.75   1   2   0   3
   151            2.25   0   3   0   3
   152            2.75   0   4   0   3
   153         2.08333   1   0   1   3
   154         2.58333   1   1   1   3
   155         2.08333   0   2   1   3
   156         2.58333   0   3   1   3
   157         2.41667   1   0   2   3
   158         2.91667   1   1   2   3
   159         2.41667   0   2   2   3
   160         2.91667   0   3   2   3
   161            2.75   1   0   3   3
   162            2.25   0   1   3   3
   163            2.75   0   2   3   3
   164         2.08333   0   0   4   3
   165         2.58333   0   1   4   3
   166         2.41667   0   0   5   3
   167         2.91667   0   1   5   3
   168            2.75   0   0   6   3
   169               2   1   0   0   4
   170             2.5   1   1   0   4
   171               2   0   2   0   4
   172             2.5   0   3   0   4
   173         2.33333   1   0   1   4
   174         2.83333   1   1   1   4
   175         2.33333   0   2   1   4
   176         2.83333   0   3   1   4
   177         2.66667   1   0   2   4
   178         2.16667   0   1   2   4
   179         2.66667   0   2   2   4
   180               2   0   0   3   4
   181             2.5   0   1   3   4
   182         2.33333   0   0   4   4
   183         2.83333   0   1   4   4
   184         2.66667   0   0   5   4
   185            2.25   1   0   0   5
   186            2.75   1   1   0   5
   187            2.25   0   2   0   5
   188            2.75   0   3   0   5
   189         2.58333   1   0   1   5
   190         2.08333   0   1   1   5
   191         2.58333   0   2   1   5
   192         2.91667   1   0   2   5
   193         2.41667   0   1   2   5
   194         2.91667   0   2   2   5
   195            2.25   0   0   3   5
   196            2.75   0   1   3   5
   197         2.58333   0   0   4   5
   198         2.91667   0   0   5   5
   199             2.5   1   0   0   6
   200               2   0   1   0   6
   201             2.5   0   2   0   6
   202         2.83333   1   0   1   6
   203         2.33333   0   1   1   6
   204         2.83333   0   2   1   6
   205         2.16667   0   0   2   6
   206         2.66667   0   1   2   6
   207             2.5   0   0   3   6
   208         2.83333   0   0   4   6
   209            2.75   1   0   0   7
   210            2.25   0   1   0   7
   211            2.75   0   2   0   7
   212         2.08333   0   0   1   7
   213         2.58333   0   1   1   7
   214         2.41667   0   0   2   7
   215         2.91667   0   1   2   7
   216            2.75   0   0   3   7
   217               2   0   0   0   8
   218             2.5   0   1   0   8
   219         2.33333   0   0   1   8
   220         2.83333   0   1   1   8
   221         2.66667   0   0   2   8
   222            2.25   0   0   0   9
   223            2.75   0   1   0   9
   224         2.58333   0   0   1   9
   225         2.91667   0   0   2   9
   226             2.5   0   0   0  10
   227         2.83333   0   0   1  10
   228            2.75   0   0   0  11
   229               3   3   0   0   0
   230               3   2   2   0   0
   231               3   1   4   0   0
   232               3   0   6   0   0
   233               3   2   0   3   0
   234               3   1   2   3   0
   235               3   0   4   3   0
   236               3   1   0   6   0
   237               3   0   2   6   0
   238               3   0   0   9   0
   239               3   2   1   0   2
   240               3   1   3   0   2
   241               3   0   5   0   2
   242               3   1   1   3   2
   243               3   0   3   3   2
   244               3   0   1   6   2
   245               3   2   0   0   4
   246               3   1   2   0   4
   247               3   0   4   0   4
   248               3   1   0   3   4
   249               3   0   2   3   4
   250               3   0   0   6   4
   251               3   1   1   0   6
   252               3   0   3   0   6
   253               3   0   1   3   6
   254               3   1   0   0   8
   255               3   0   2   0   8
   256               3   0   0   3   8
   257               3   0   1   0  10
   258               3   0   0   0  12
   MAX               3   4   7  10  13

  SGMGA_VCN_ORDERED:
     I               Q   X
   MIN        0.916667   0   0   0   0
     1               1   1   0   0   0
     2             1.5   1   1   0   0
     3               1   0   2   0   0
     4             1.5   0   3   0   0
     5         1.33333   1   0   1   0
     6         1.83333   1   1   1   0
     7         1.33333   0   2   1   0
     8         1.83333   0   3   1   0
     9         1.66667   1   0   2   0
    10         1.16667   0   1   2   0
    11         1.66667   0   2   2   0
    12               1   0   0   3   0
    13             1.5   0   1   3   0
    14         1.33333   0   0   4   0
    15         1.83333   0   1   4   0
    16         1.66667   0   0   5   0
    17            1.25   1   0   0   1
    18            1.75   1   1   0   1
    19            1.25   0   2   0   1
    20            1.75   0   3   0   1
    21         1.58333   1   0   1   1
    22         1.08333   0   1   1   1
    23         1.58333   0   2   1   1
    24         1.91667   1   0   2   1
    25         1.41667   0   1   2   1
    26         1.91667   0   2   2   1
    27            1.25   0   0   3   1
    28            1.75   0   1   3   1
    29         1.58333   0   0   4   1
    30         1.91667   0   0   5   1
    31             1.5   1   0   0   2
    32               1   0   1   0   2
    33             1.5   0   2   0   2
    34         1.83333   1   0   1   2
    35         1.33333   0   1   1   2
    36         1.83333   0   2   1   2
    37         1.16667   0   0   2   2
    38         1.66667   0   1   2   2
    39             1.5   0   0   3   2
    40         1.83333   0   0   4   2
    41            1.75   1   0   0   3
    42            1.25   0   1   0   3
    43            1.75   0   2   0   3
    44         1.08333   0   0   1   3
    45         1.58333   0   1   1   3
    46         1.41667   0   0   2   3
    47         1.91667   0   1   2   3
    48            1.75   0   0   3   3
    49               1   0   0   0   4
    50             1.5   0   1   0   4
    51         1.33333   0   0   1   4
    52         1.83333   0   1   1   4
    53         1.66667   0   0   2   4
    54            1.25   0   0   0   5
    55            1.75   0   1   0   5
    56         1.58333   0   0   1   5
    57         1.91667   0   0   2   5
    58             1.5   0   0   0   6
    59         1.83333   0   0   1   6
    60            1.75   0   0   0   7
    61               2   2   0   0   0
    62             2.5   2   1   0   0
    63               2   1   2   0   0
    64             2.5   1   3   0   0
    65               2   0   4   0   0
    66             2.5   0   5   0   0
    67         2.33333   2   0   1   0
    68         2.83333   2   1   1   0
    69         2.33333   1   2   1   0
    70         2.83333   1   3   1   0
    71         2.33333   0   4   1   0
    72         2.83333   0   5   1   0
    73         2.66667   2   0   2   0
    74         2.16667   1   1   2   0
    75         2.66667   1   2   2   0
    76         2.16667   0   3   2   0
    77         2.66667   0   4   2   0
    78               2   1   0   3   0
    79             2.5   1   1   3   0
    80               2   0   2   3   0
    81             2.5   0   3   3   0
    82         2.33333   1   0   4   0
    83         2.83333   1   1   4   0
    84         2.33333   0   2   4   0
    85         2.83333   0   3   4   0
    86         2.66667   1   0   5   0
    87         2.16667   0   1   5   0
    88         2.66667   0   2   5   0
    89               2   0   0   6   0
    90             2.5   0   1   6   0
    91         2.33333   0   0   7   0
    92         2.83333   0   1   7   0
    93         2.66667   0   0   8   0
    94            2.25   2   0   0   1
    95            2.75   2   1   0   1
    96            2.25   1   2   0   1
    97            2.75   1   3   0   1
    98            2.25   0   4   0   1
    99            2.75   0   5   0   1
   100         2.58333   2   0   1   1
   101         2.08333   1   1   1   1
   102         2.58333   1   2   1   1
   103         2.08333   0   3   1   1
   104         2.58333   0   4   1   1
   105         2.91667   2   0   2   1
   106         2.41667   1   1   2   1
   107         2.91667   1   2   2   1
   108         2.41667   0   3   2   1
   109         2.91667   0   4   2   1
   110            2.25   1   0   3   1
   111            2.75   1   1   3   1
   112            2.25   0   2   3   1
   113            2.75   0   3   3   1
   114         2.58333   1   0   4   1
   115         2.08333   0   1   4   1
   116         2.58333   0   2   4   1
   117         2.91667   1   0   5   1
   118         2.41667   0   1   5   1
   119         2.91667   0   2   5   1
   120            2.25   0   0   6   1
   121            2.75   0   1   6   1
   122         2.58333   0   0   7   1
   123         2.91667   0   0   8   1
   124             2.5   2   0   0   2
   125               2   1   1   0   2
   126             2.5   1   2   0   2
   127               2   0   3   0   2
   128             2.5   0   4   0   2
   129         2.83333   2   0   1   2
   130         2.33333   1   1   1   2
   131         2.83333   1   2   1   2
   132         2.33333   0   3   1   2
   133         2.83333   0   4   1   2
   134         2.16667   1   0   2   2
   135         2.66667   1   1   2   2
   136         2.16667   0   2   2   2
   137         2.66667   0   3   2   2
   138             2.5   1   0   3   2
   139               2   0   1   3   2
   140             2.5   0   2   3   2
   141         2.83333   1   0   4   2
   142         2.33333   0   1   4   2
   143         2.83333   0   2   4   2
   144         2.16667   0   0   5   2
   145         2.66667   0   1   5   2
   146             2.5   0   0   6   2
   147         2.83333   0   0   7   2
   148            2.75   2   0   0   3
   149            2.25   1   1   0   3
   150            2.75   1   2   0   3
   151            2.25   0   3   0   3
   152            2.75   0   4   0   3
   153         2.08333   1   0   1   3
   154         2.58333   1   1   1   3
   155         2.08333   0   2   1   3
   156         2.58333   0   3   1   3
   157         2.41667   1   0   2   3
   158         2.91667   1   1   2   3
   159         2.41667   0   2   2   3
   160         2.91667   0   3   2   3
   161            2.75   1   0   3   3
   162            2.25   0   1   3   3
   163            2.75   0   2   3   3
   164         2.08333   0   0   4   3
   165         2.58333   0   1   4   3
   166         2.41667   0   0   5   3
   167         2.91667   0   1   5   3
   168            2.75   0   0   6   3
   169               2   1   0   0   4
   170             2.5   1   1   0   4
   171               2   0   2   0   4
   172             2.5   0   3   0   4
   173         2.33333   1   0   1   4
   174         2.83333   1   1   1   4
   175         2.33333   0   2   1   4
   176         2.83333   0   3   1   4
   177         2.66667   1   0   2   4
   178         2.16667   0   1   2   4
   179         2.66667   0   2   2   4
   180               2   0   0   3   4
   181             2.5   0   1   3   4
   182         2.33333   0   0   4   4
   183         2.83333   0   1   4   4
   184         2.66667   0   0   5   4
   185            2.25   1   0   0   5
   186            2.75   1   1   0   5
   187            2.25   0   2   0   5
   188            2.75   0   3   0   5
   189         2.58333   1   0   1   5
   190         2.08333   0   1   1   5
   191         2.58333   0   2   1   5
   192         2.91667   1   0   2   5
   193         2.41667   0   1   2   5
   194         2.91667   0   2   2   5
   195            2.25   0   0   3   5
   196            2.75   0   1   3   5
   197         2.58333   0   0   4   5
   198         2.91667   0   0   5   5
   199             2.5   1   0   0   6
   200               2   0   1   0   6
   201             2.5   0   2   0   6
   202         2.83333   1   0   1   6
   203         2.33333   0   1   1   6
   204         2.83333   0   2   1   6
   205         2.16667   0   0   2   6
   206         2.66667   0   1   2   6
   207             2.5   0   0   3   6
   208         2.83333   0   0   4   6
   209            2.75   1   0   0   7
   210            2.25   0   1   0   7
   211            2.75   0   2   0   7
   212         2.08333   0   0   1   7
   213         2.58333   0   1   1   7
   214         2.41667   0   0   2   7
   215         2.91667   0   1   2   7
   216            2.75   0   0   3   7
   217               2   0   0   0   8
   218             2.5   0   1   0   8
   219         2.33333   0   0   1   8
   220         2.83333   0   1   1   8
   221         2.66667   0   0   2   8
   222            2.25   0   0   0   9
   223            2.75   0   1   0   9
   224         2.58333   0   0   1   9
   225         2.91667   0   0   2   9
   226             2.5   0   0   0  10
   227         2.83333   0   0   1  10
   228            2.75   0   0   0  11
   229               3   3   0   0   0
   230               3   2   2   0   0
   231               3   1   4   0   0
   232               3   0   6   0   0
   233               3   2   0   3   0
   234               3   1   2   3   0
   235               3   0   4   3   0
   236               3   1   0   6   0
   237               3   0   2   6   0
   238               3   0   0   9   0
   239               3   2   1   0   2
   240               3   1   3   0   2
   241               3   0   5   0   2
   242               3   1   1   3   2
   243               3   0   3   3   2
   244               3   0   1   6   2
   245               3   2   0   0   4
   246               3   1   2   0   4
   247               3   0   4   0   4
   248               3   1   0   3   4
   249               3   0   2   3   4
   250               3   0   0   6   4
   251               3   1   1   0   6
   252               3   0   3   0   6
   253               3   0   1   3   6
   254               3   1   0   0   8
   255               3   0   2   0   8
   256               3   0   0   3   8
   257               3   0   1   0  10
   258               3   0   0   0  12
   MAX               3   4   7  10  13

SGMGA_VCN_PRB
  Normal end of execution.

16 October 2011 12:11:41 PM